Программирование ардуино блоками. Программирование Arduino с помощью ArduBloсk (скачать)

В данном уроке мы научимся программировать Ардуино на языке программирования Scratch с использованием mBlock. Но во-первых, давайте быстро рассмотрим, что такое Arduino и Scratch, соответственно.

Arduino - небольшая плата, предназначенная в первую очередь для создания прототипов, которая воплощает любые идеи в жизнь. Используя Arduino, можно создать робота, электронный гаджет и многое другое. Нет предела! На фото ниже плата .

Например, для запуска двигателей с заданными интервалами может использоваться плата Arduino, которая подключается к четырем двигателям (плюс к двигателю управления). Вы должны поручить Arduino управлять двигателями с использованием языка программирования, где вы пропишите шаги, а готовую программу загрузите в плату, чтобы проект заработал.

Микроконтроллер имеет собственный язык программирования, хотя этот язык состоит из функций, выведенных из C/C++.

Однако вы можете использовать другие языки для программирования Arduino, как правило, используя сторонний инструмент, такой как Snap4Arduino, ArduBlock и другие. Одной из таких программ является mBlock, которая позволяет использовать визуальный язык программирования Scratch с Arduino.

В этом уроке мы рассмотрим основы использования mBlock для программирования Arduino с Scratch.

Scratch (Скретч) - это язык программирования, разработанный для детей, чтобы они могли изучать программирование в интерактивном режиме. В Scratch вы присоединяете помеченные блоки (которые служат фрагментами кода) для написания полноценной программы или игры.


Используя Scratch, некоторые пользователи разработали еще одно дополнение, называемое mBlock. Разница между mBlock и Scratch заключается в том, что mBlock позволяет вам запрограммировать Arduino простым и интерактивным способом.

Интересная вещь mBlock заключается в том, что вы можете увидеть исходный код на C++ после программирования Arduino.


Мигаем светодиодом с использованием mBlock

Давайте используя mBlock начнем с малого, сделав программу, которая заставит мигать светодиод.

Проверьте, насколько это просто:

В приведенной выше программе вы можете увидеть, что мы разместили блок Arduino и "вечный блок" (англ. - forever). Эти два блока являются обязательными для программирования Arduino.

Суть использования вечного блока заключается в том, что в программе Arduino логика должна быть такой, чтобы она выполнялась в цикле бесконечно. В нашем случае нам нужно снова и снова мигать светодиодом, поэтому во многих случаях использование вечного блока является обязательным, и это облегчает жизнь при программировании Arduino.

Внутри блока forever установите, какой цифровой контакт будет использоваться. Этот может обеспечить высокое или низкое напряжение пина. Итак, если у меня есть светодиод, подключенный к контакту номер 13 Arduino (смотрите ниже), и я хочу включить его, я буду использовать «set digital pin 13 output HIGH », и мой светодиод загорится.

Эта программа использует задержки (delays ) для приостановки программы в течение одной секунды между состояниями ON и OFF . Таким образом, мы можем видеть, как светодиод мигает.

Попробуйте подключить Arduino к светодиоду, как показано выше, и запустить код после подключения Arduino к компьютеру (убедитесь, что вы выбрали правую плату и последовательный порт с mBlock). Для этого вам обязательно нужна программная среда .

Затем запустите код. Вы сможете увидеть, что светодиод мигает.

Это хороший инструмент для начинающих. Попробуйте изучить другие блоки и посмотреть, что вы можете сделать!

Возможно, правы разработчики операционных систем, считающие пользователя злейшим врагом и самым опасным вирусом. А, может быть, не правы, создают они свои творения не для себя, а для пользователей. Словом, не знаю. Но, что точно знаю, я хочу видеть работающую программу S4A не только в Windows, но в Linux, и не только в дистрибутиве Debian.

Начинаю я этот процесс с загрузки версии для Debian на сайте разработчиков: http://seaside.citilab.eu/scratch/arduino . Все загружаемые файлы располагаются по завершении загрузки в папке «Загрузка» или «Downloads». Архивированные файлы, предназначенные для Linux, распаковываются менеджером архивов. Скачанный мной в openSUSE файл имеет расширение deb, но, используя Ark, тот самый менеджер архивов, его можно распаковать. В openSUSE с графическим менеджером KDE 4 для этого достаточно щёлкнуть правой клавишей мышки по файлу и выбрать пункт выпадающего меню «Распаковать во вложенную папку». В итоге появляется папка с именем S4A.

Заглянем в неё.

Рис. 5.1. Содержимое скачанной папки S4A

Два файла с расширением tar.gz подлежат дальнейшей разархивации.

Рис. 5.2. Выпадающее меню работы с архивированными файлами

В результате рядом с архивами появляется ряд файлов и папка, озаглавленная «usr». Из опыта работы с Linux я знаю, что в этой папке могут находиться файлы, которые при установке размещаются по адресу /usr корневой файловой системы. Если открыть эту папку, то,

Глава 5. Arduino, визуальное программирование

действительно, в ней можно увидеть еще три папки.

Эти три папки соответствуют разделам, которые можно увидеть, если открыть в файловом менеджере раздел «Корневая папка» в директории /usr.

Рис. 5.4. Разделы директории usr файловой системы

Содержимое, скачанное ранее, папок bin, lib и share, как я полагаю, следует разместить в папки, отмеченные выше. Но, конечно, простому пользователю менять что-то в файловой системе никто не позволит. Поэтому в разделе основного меню «Система» находим пункт «Файловый менеджер», открывающий новое подменю, где есть «Менеджер файлов (с правами администратора)». Этот менеджер позволит перенести все нужные файлы в операционную систему. Ничего не выдумывая, открывая параллельно папки в двух проводниках, просто последовательно открывать нужные (они все названы) папки до появления файлов, а файлы копировать.

Глава 5. Arduino, визуальное программирование

Рис. 5.5. Перенос файлов программы в openSUSE

Особенно внимательно следует отнестись к папке share, поскольку она имеет много вложенных папок, и соответствующие папки следует отыскивать в файловой системе.

Завершив копирование, можно попытаться отыскать программу в основном меню. И, впрямь, на закладке «Приложения» в разделе «Разработка» (у меня ещё один раздел «Другие программы») появляется программа S4A. И её даже можно запустить. Но она после нескольких движений мышкой начинает виснуть...

В терминале, а в openSUSE есть терминал с правами суперпользователя; от имени суперпользователя, предварительно подключив модуль Arduino, запускаем программу. И она работает. Теперь её можно запустить обычным образом.

В других дистрибутивах Linux операции схоже с теми, что описаны выше, отличия не столь значительны. Хотя в Fedora 14 я просто сменил пользователя, войдя в систему под root, что делать, конечно, не следует, но так было проще всё разместить в нужных местах.

Установив программу в Linux, посмотрим, а для чего мы её устанавливали?

Во-первых, программа работает с модулем, показывая, что происходит на аналоговых и цифровых входах модуля. Что уже неплохо. Но не это главное. Главное, во-вторых - программа позволяет собирать программу, а не кодировать на языке Arduino.

Когда программа начинает работать, в левом окне есть ряд элементов, которые можно, подцепив мышкой, перенести в среднее окно - рабочее «сборочное» поле. Перенесём так элемент, который называется Start.

Глава 5. Arduino, визуальное программирование

Рис. 5.6. Перенос нужных программных элементов

Теперь, нажав клавишу с надписью «контроль» в окошке чуть выше, получим ряд новых элементов.

Рис. 5.7. Список элементов в группе «Контроль»

Среди этих элементов выберем элемент «всегда», который перенесём к уже имеющемуся элементу, и добавим так, чтобы верхний вырез вошёл в выступ.

Глава 5. Arduino, визуальное программирование

Рис. 5.8. Добавление элементов в программу

Вернёмся к набору элементов, с которого начинали, нажав на клавишу «движение», и выберем элемент «digital 13 on», который перенесём и положим внутрь предыдущего.

Рис. 5.9. Команда включения цифрового вывода

Из набора элементов «контроль» возьмём элемент «ждать 1 секунду», который вставим внутрь элемента «всегда» под элемент «digital 13 on». Чтобы ускорить этот процесс, вставим элемент ожидания ещё раз, вернёмся к элементам движения и добавим элемент «digital 13 off» между двумя элементами ожидания.

Рис. 5.10. Программа Blink в графическом виде

Вам эта конструкция ничего не напоминает? Когда мы начинали описывать первую программу обычным языком, мы так и записывали её.

Дважды щёлкните по элементу «start» левой клавишей мышки и посмотрите на модуль Arduino

Молчавший до сих пор светодиод на выводе 13 исправно мигает раз в секунду.

Мы собрали программу, запустили её и заставили работать модуль согласно этой программе. И мы не написали ни строчки кода. Именно по этой причине я предпочитаю различать программирование и написание программного кода.

Глава 5. Arduino, визуальное программирование

Но, может быть, это работает ранее загруженная программа, а не нами собранная?

Остановим работу программы, вновь дважды щёлкнув мышкой по элементу «start». Щёлкнем левой клавишей по единичке элемента «ждать 1 секунду».

Рис. 5.11. Изменение параметров программных элементов

Впечатаем цифру 5 (как на нижнем элементе). Запустим программу... и убедимся, ничего мы не перепутали, светодиод мигает с интервалом раз в 5 секунд!

Мы не проверяли работу цифрового входа в «живом» виде. Не пора ли это сделать?

Соберём программу в S4A. Первые «кирпичики» те же, что и в предыдущей программе. Далее... нам понадобится выполнить условие: если кнопка нажата, включить светодиод, иначе выключить. Такой элемент есть - это «если... или...». В его верхней части есть «гнездо», куда можно вставить нужное нам условие «цифровой вход...».

Рис. 5.12. Добавление условия в элемент if ветвления программы

Осталось добавить действия, чтобы получить нужный вид программы.

Рис. 5.13. Окончательное формирование программы

Если сравнивать её с программой, написанной на языке Arduino, то можно сказать, что отличия только те, что были внесены сознательно: когда кнопка отпущена, светодиод не горит, когда нажата, светодиод загорается.

Глава 5. Arduino, визуальное программирование

Пора перейти к проверке. Но прежде небольшое предупреждение.

На схеме, приведённой в примерах, кнопка соединяется с выводом +5 В. Я бы советовал включить её несколько иначе.

Особенно, если вы проверяете все «на весу». При случайной ошибке может получиться так, как было у меня, из модуля пойдёт дымок, который очень подпортит настроение. А самый правильный путь - использовать макетную плату с переходными разъёмами (для Arduino Nano, думаю, найдётся подходящая панелька под микросхему).

Проверив правильность соединений на макетной плате, подключив к ней модуль Arduino, можно включить его в разъём USB компьютера и запустить программу S4A. Обратите внимание - когда вы между цифровым входом и землёй включили резистор 10 кОм, показания (в правом окошке программы) перестали случайным образом меняться между «false, ложно» и «true, истинно». Запускаем нашу программу двойным щелчком по элементу «start», добавим, зайдя в раздел основного меню «Редактировать», пошаговое выполнение.

Рис. 5.14. Добавление пошагового выполнения в отладочную процедуру

Можно ещё в пункте «установить единичный шаг...» выбрать скорость выполнения. И теперь, пока кнопка не нажата, мы видим, что светодиод не горит, а программа выполняется только в той части, где это задано.

Глава 5. Arduino, визуальное программирование

Рис. 5.15. Выполнение программы в режиме отладки

В правом верхнем окошке можно видеть состояние входа Digital1 - false. Вход на земле, на входе низкий логический уровень, а это, с точки зрения программы, состояние «ложно». Нажмём кнопку.

Рис. 5.16. Работа программы при нажатой кнопке

Изменилось состояние входа «true», горит светодиод, и программа входит в ту часть, где условие выполнено.

Если обратить внимание на оранжевые элементы в разделе «контроль», то видно, многие из

Глава 5. Arduino, визуальное программирование

них имеют «гнёзда» для вставки условий.

Условия могут быть разными. Выше мы использовали в качестве условия изменение состояния цифрового входа. Но это могут быть и другие условия.

Рис. 5.17. Гнёзда для добавления условий в элементах контроля

И ещё - обратите внимание на чёрные стрелочки «вниз» рядом со многими элементами.

Нажимаем эту стрелочку с помощью мышки...

Рис. 5.18. Стрелка, открывающая список возможных сенсоров

И получаем возможность менять, например, как в этом случае используемый вход. В других случаях меняется, скажем, выходной вывод или аналоговый вход. У нас большой выбор возможностей для экспериментов с модулем Arduino. Впрочем, отчего с модулем? Мы вправе использовать несколько модулей. Достаточно, не скажу, что это единственный способ, перейти на закладку «костюмы», щёлкнуть правой клавишей мышки по существующему «костюму» и выбрать раздел «переключиться к новому объекту».

Появится ещё один модуль Arduino. Если у вас он есть, если вы его подключили к USB порту, то можно, думаю, с ним тоже работать.

Глава 5. Arduino, визуальное программирование

Рис. 5.19. Добавление второго модуля Arduino

И последнее замечание. Всё, что мы делаем в программе S4A, мы делаем, используя язык программирования Scratch. Как вам это?

Я рассказал о предыстории появления проекта FLProg. Сейчас я хочу поподробнее рассказать о проекте и его состоянии на сегодняшний день.
Основной целью проекта является включение в круг пользователей плат Arduino людей незнакомых с программированием. Это возможно благодаря опыту промышленного программирования, который накапливался годами производителями промышленных контроллеров.
Проект состоит из двух частей. Первая часть это десктоп приложение FLProg представляющее собой графическую среду программирования плат Arduino. Во вторых, это сайт FLProg.ru , с помощью которого члены сообщества пользователей программы могут пообщаться между собой, узнать последние новости проекта, скачать последнюю версию программы, ну и найти необходимую информацию по работе с приложением.

Начнем по порядку.
Программа FLProg позволяет создавать прошивки для плат Arduino с помощью графических языков FBD и LAD, которые являются стандартом в области программирования промышленных контроллеров.

Описание языка FBD

FBD (Function Block Diagram) - графический язык программирования стандарта МЭК 61131-3. Программа образуется из списка цепей, выполняемых последовательно сверху вниз. При программировании используются наборы библиотечных блоков. Блок (элемент) - это подпрограмма, функция или функциональный блок (И, ИЛИ, НЕ, триггеры, таймеры, счётчики, блоки обработки аналогового сигнала, математические операции и др.). Каждая отдельная цепь представляет собой выражение, составленное графически из отдельных элементов. К выходу блока подключается следующий блок, образуя цепь. Внутри цепи блоки выполняются строго в порядке их соединения. Результат вычисления цепи записывается во внутреннюю переменную либо подается на выход контроллера.


Описание языка LAD

Ladder Diagram (LD, LAD, РКС) - язык релейной (лестничной) логики. Синтаксис языка удобен для замены логических схем, выполненных на релейной технике. Язык ориентирован на инженеров по автоматизации, работающих на промышленных предприятиях. Обеспечивает наглядный интерфейс логики работы контроллера, облегчающий не только задачи собственно программирования и ввода в эксплуатацию, но и быстрый поиск неполадок в подключаемом к контроллеру оборудовании. Программа на языке релейной логики имеет наглядный и интуитивно понятный инженерам-электрикам графический интерфейс, представляющий логические операции, как электрическую цепь с замкнутыми и разомкнутыми контактами. Протекание или отсутствие тока в этой цепи соответствует результату логической операции (истина - если ток течет; ложь - если ток не течет). Основными элементами языка являются контакты, которые можно образно уподобить паре контактов реле или кнопки. Пара контактов отождествляется с логической переменной, а состояние этой пары - со значением переменной. Различаются нормально замкнутые и нормально разомкнутые контактные элементы, которые можно сопоставить с нормально замкнутыми и нормально разомкнутыми кнопками в электрических цепях.


Я немного расширил классический функционал этих языков, добавив функциональные блоки, отвечающие за работу с внешними устройствами. Они являются обертками, над библиотеками, предназначенными для работы с ними.
Проект в FLProg представляет собой набор плат, на каждой, из которой собран законченный модуль общей схемы. Для удобства работы каждая плата имеет наименование и комментарии. Так же каждую плату можно свернуть (для экономии места на рабочей зоне, когда работа над ней закончена), и развернуть. Красный индикатор в наименовании платы указывает на то, что в схеме платы есть ошибки.

Вид окна программы в режиме языка FBD

Вид окна программы в режиме языка LAD

Схема каждой платы собирается из функциональных блоков в соответствии с логикой работы контроллера. Большинство функциональных блоков имеют возможность настройки, с помощью которой их работу можно настроить в соответствии с необходимыми в данном конкретном случае требованиями.

Так же для каждого функционального блока есть развернутое описание, которое доступно в любой момент и помогает разобраться в его работе и настройках.

При работе с программой пользователю нет необходимости заниматься написанием кода, контролем за использованием входов – выходов, проверкой уникальности имен и согласованностью типов данных. За всем этим следит программа. Так же она проверяет корректность проекта целиком и указывает на наличие ошибок.
Для работы с внешними устройствами создано несколько вспомогательных инструментов. Это инструмент инициализации и настройки часов реального времени, инструменты для чтения адресов устройств на шинах OneWire и I2C а так же инструмент для чтения и сохранения кодов кнопок на ИК пульте. Все определённые данные можно сохранить в виде файла и в последующем использовать в программе.

Список функциональных блоков существующих на сегодняшний день в языке FBD

Базовые элементы



Специальные блоки

Тригеры



Таймеры


Счетчики


Математика



Алгебра






Сравнение

Com - Порт

Send
SendVariable
ReceiveVariable

Переключатель


Моторы

ServoMotor
StepMotor

Часы реального времени


Дисплеи

Дисплей на чипе НD44780
Подсветка дисплея на чипе НD44780 I2C

Строки

Сложение строк

Датчики



SD карта

Запись переменной на SD карту
Выгрузка файла с SD карты

Конвертация типов

Преобразование строк
Преобразование Float в Integer

Микросхемы расширений

Расширитель выводов 74HC595

Операции с битами

Шифратор
Дешифратор
Чтение бита
Запись бита

Разное

Матричная клавиатура

Список функциональных блоков существующих на сегодняшний день в языке LAD

Базовые блоки

Контакт
Катушка
Защита от дребезга
Выделение переднего фронта

Специальные реле

Двустабильное реле
Реле времени
Генератор
Реле сравнения

Алгебра

SIN
COS
TAN
ABS
MAX
MIN
SQ
SQRT
POW
RANDOM

Аналоговые блоки

Масштабирование
Математика
Счетчик
Аналоговый переключатель
Переключатель много к одному
Переключатель один ко многим
Аналоговый вход контроллера
Аналоговый выход контроллера
Вход аналогового соеденителя
Выход аналогового соединителя
Скоростной счетчик

ComPort

Передача в ComPort
Передача переменной через ComPort
Прием переменной через ComPort

Моторы

Сервомотор
Шаговый двигатель

Часы реального времени

Получить данные
Будильник
Установка времени

Дисплеи

Дисплей на чипе HD44780
Блок управления подсветкой дисплея на чипе HD4480 I2C
Блок декодирования семи сегментного индикатора

Строки

Сложение строк

Датчики

Ультразвуковой дальномер HC-SR04
Датчик температуры и влажности DHT11 (DHT21, DHT22)
Датчик температуры DS18x2x
IR Ressive
BMP-085

Данный блог посвящён этому проекту, и здесь я буду рассказывать о новостях проекта, и достижениях участников сообщества пользователей программы. Проект посвящён созданию визуальной среды программирования плат Arduino, и поэтому прежде чем рассказывать о программе FLProg, я хочу сделать небольшой обзор существующих программ предназначенных для программирования этих плат.

Среды программирования плат ардуино можно разделить на следующие типы:

  1. Прокачанные «Блокноты»
  2. Текстовые среды разработки
  3. Графические среды, визуализирующие структуру кода.
  4. Графические среды, отображающие код в виде графики.
  5. Визуальные среды программирования, не использующие кода.
Рассмотрим каждый тип.

Прокачанные «Блокноты»

К этому типу относятся оригинальная среда программирования Arduino-IDE, а так же множество её клонов.

Проектирование программы для контроллера в ней происходит на языке Processing/Wiring, который является диалектом языка Си (скорее Си++). Эта среда представляет собой, по сути, обычный текстовый редактор с возможностью загрузки написанного кода в контроллер

Текстовые среды разработки

Альтернативой Arduino IDE является среда разработки от производителя микроконтроллеров Atmel - AVRStudio.

Программирование в ней ведётся на чистом C, и она уже имеет намного больше возможностей и более похожа на серьёзные IDE для «настоящих» языков программирования.

Эти два типа программ рассчитаны на опытных программистов, которые хорошо знают язык и могут с помощью них создавать серьёзные проекты.

Графические среды, визуализирующие структуру кода.

Это программы, которые, по сути, являются расширением форматирования для обычного текстового редактора кода. В нем программа так же пишется на языке С, но в более удобном варианте. Сейчас таких сред очень много, самые яркие примеры: Scratch, S4A, Ardublock. Они очень хорошо подходят для начального обучения программированию на языке С, поскольку отлично показывают структуру и синтаксис языка. Но для больших серьёзных проектов программа получается громоздкой.

Графические среды, отображающие код в виде графики

Это программы, скрывающие код и заменяющие его графическими аналогами. В них так же повторяется структура языка, формируются циклы, переходы, условия. Так же очень хорошо подходят для обучения построению алгоритмов, с последующим переходом на программирование на классических языках. И так же не подходят для построения больших проектов ввиду громоздкости получаемого отображения. Пример такой программы: MiniBlog, Algorithm Builder, Flowcode

Описанные выше типы программ рассчитаны на программистов или на тех, кто решил изучать классическое программирование. Но для изготовления конечного устройства кроме непосредственно программирования контроллера обычно требуется разработка внешней обвязки платы, разработка и расчет силовой части, входных развязок и многого другого. С этим у программистов часто возникают проблемы. Зато с этим прекрасно справляются электрики и электронщики. Но среди них мало программистов, которые смогли бы составить программу для контроллера. Сочетание программиста и электронщика – достаточно редкий случай. В результате такой ситуации реальных, законченных проектов на основе плат Arduino (да и других контроллеров) единицы. Для решения этой проблемы и служат программы последнего типа.

Визуальные среды программирования, не использующие кода.

Данные программы реализуют принцип, который уже много лет применяется практически всеми производителями контроллеров промышленного применения. Он заключается в создании программ для контроллера на языках FBD или LAD. Собственно говоря, как таковыми языками они не являются. Это, скорее, графические среды для рисования принципиальных или логических схем. Вспомним, что процессоры далеко не всегда были микропроцессорами, а создавались на базе цифровых микросхем. Поэтому тем, кто привык работать с цифровой техникой, больше понравится работа на них, чем написание кода на классических языках программирования. Примером таких программ являются проекты Horizont и FLProg. Программы этого типа хорошо подходят как для изучения построения импульсной и релейной техники, так и для создания серьезных проектов.


Ну и наконец, герой этого блога, проект FLProg .

Поскольку я много лет работаю разработчиком систем АСУТП, я постарался собрать в программе FLProg все, что мне наиболее понравилось в средах от ведущих производителей промышленного оборудования (Tia-Portal, Zelio Soft, Logo Soft Comfort).
Программа позволяет составлять схемы в двух видах: функциональные схемы (FBD) и релейные схемы (LAD).

FBD (Function Block Diagram) – графический язык программирования стандарта МЭК 61131-3. Программа образуется из списка цепей, выполняемых последовательно сверху вниз. При программировании используются наборы библиотечных блоков. Блок (элемент) - это подпрограмма, функция или функциональный блок (И, ИЛИ, НЕ, триггеры, таймеры, счётчики, блоки обработки аналогового сигнала, математические операции и др.). Каждая отдельная цепь представляет собой выражение, составленное графически из отдельных элементов. К выходу блока подключается следующий блок, образуя цепь. Внутри цепи блоки выполняются строго в порядке их соединения. Результат вычисления цепи записывается во внутреннюю переменную либо подается на выход контроллера.



Ladder Diagram (LD, LAD, РКС) – язык релейной (лестничной) логики. Синтаксис языка удобен для замены логических схем, выполненных на релейной технике. Язык ориентирован на специалистов по автоматизации, работающих на промышленных предприятиях. Обеспечивает наглядный интерфейс логики работы контроллера, облегчающий не только задачи собственно программирования и ввода в эксплуатацию, но и быстрый поиск неполадок в подключаемом к контроллеру оборудовании. Программа на языке релейной логики имеет наглядный и интуитивно понятный инженерам-электрикам графический интерфейс, представляющий логические операции, как электрическую цепь с замкнутыми и разомкнутыми контактами. Протекание или отсутствие тока в этой цепи соответствует результату логической операции (истина - если ток течет; ложь - если ток не течет). Основными элементами языка являются контакты, которые можно образно уподобить паре контактов реле или кнопки. Пара контактов отождествляется с логической переменной, а состояние этой пары - со значением переменной. Различаются нормально замкнутые и нормально разомкнутые контактные элементы, которые можно сопоставить с нормально замкнутыми и нормально разомкнутыми кнопками в электрических цепях.

Такой способ программирования оказался очень удобным для легкого вхождения в разработку систем АСУ инженеров-электриков и электронщиков. Разрабатывая проекты устройств, они могут легко привязать работу этих установок к алгоритмам работы контроллера.

Построенная на этих представлениях программа FLProg работает с Arduino. Почему?
Плата очень удобна для быстрой разработки и отладки своих устройств, что важно не только радиолюбителям, но весьма полезно, например, и в школьных кружках, и в учебных лабораториях колледжей. Одно из преимуществ – вам не нужен программатор. Вы подключаете плату Arduino к компьютеру и готовую программу загружаете из среды разработки. В настоящее время существует богатый выбор модулей Arduino, дополнительных модулей, работающих с Arduino, датчиков и исполняющих устройств.

В настоящее время программой поддерживаются следующие версии Arduino: Arduino Diecimila, Arduino Duemilanove, Arduino Leonardo, Arduino Lilypad, Arduino Mega 2560, Arduino Micro, Arduino Mini, Arduino Nano (ATmega168), Arduino Nano (ATmega328), Arduino Pro Mini, Arduino Pro (ATmega168), Arduino Pro (ATmega328), Arduino UNO. Кроме того недавно в списке поддерживаемых контроллеров появилась плата Intel Galileo gen2. В дальнейшем предполагается пополнение и этого списка, и, возможно, добавление плат, основанных на контроллерах STM.

Проект в программе FLProg представляет собой набор своеобразных плат, на каждой из которых собран законченный модуль общей схемы. Для удобства работы каждая плата имеет наименование и комментарии. Также каждую плату можно свернуть (для экономии места в рабочей зоне, когда работа над ней закончена) и развернуть.

Состав библиотеки элементов для языка FBD на текущий момент.

Оформление

  • Надпись
  • Изображение
Базовые элементы
  • Таблица состояний
Специальные блоки
Тригеры
Таймеры
Счетчики
Математика
Алгебра
Сравнение
UART
  • Отправка в UART
  • Приём из UART
  • Отправка переменной в UART
  • Прием переменной из UART
Переключатель
Моторы
  • ServoMotor
  • StepMotor
Часы реального времени
Дисплеи
  • Дисплей на чипе НD44780
  • Подсветка дисплея на чипе НD44780 I2C
Строки
  • Сложение строк
  • Сравнение строк
  • Длинна строки
  • Поиск подстроки
  • Получение подстроки
  • Получить символ из строки
  • Добавить Char к строке
Массивы
  • Запись элемента в массив
  • Получение элемента массива
  • Сумма элементов массива
  • Поиск элемента в массиве
Датчики
SD карта
  • Выгрузка файла с SD карты
  • Запись переменной на SD карту
Конвертация типов
  • Преобразование строк
  • -> Byte
  • -> Char
Микросхемы расширений
  • Расширитель выводов 74HC595
  • Драйвер светодиодов MAX7219
Операции с битами
  • Дешифратор
  • Шифратор
  • Чтение бита
  • Запись бита
Разное
  • Матричная клавиатура
  • Пьезо динамик
  • Сканирование шины OneWare
EEPROM
  • Запись в EEPROM
  • Чтение из EEPROM
Коммуникации
  • RessiveVariableFromCommunication
  • WebServerPage
  • SendVariableFromCommunication
  • WebClient
Готовые сервисы
  • narodmon.ru
  • goplusplatform.com

Состав библиотеки элементов для языка LAD на текущий момент.

Оформление

  • Надпись
  • Изображение
Базовые блоки
  • Контакт
  • Катушка
  • Защита от дребезга
  • Выделение переднего фронта
  • Таблица состояний
Специальные реле
  • Двустабильное реле
  • Реле времени
  • Генератор
  • Реле сравнения
Алгебра
  • RANDOM
Аналоговые блоки
  • Масштабирование
  • Математика
  • Счетчик
  • Аналоговый переключатель
  • Переключатель много к одному
  • Переключатель один ко многим
  • Аналоговый вход контроллера
  • Аналоговый выход контроллера
  • Вход аналогового соеденителя
  • Выход аналогового соеденителя
  • Скоростной счетчик
UART
  • Отправка в UART
  • Приём из UART
  • Отправка переменной в UART
  • Прием переменной из UART
Моторы
  • Сервомотор
  • Шаговый двигатель
Часы реального времени
  • Получить данные
  • Будильник
  • Установка времени
Дисплеи
  • Дисплей на чипе HD44780
  • Блок управления подсветкой дисплея на чипе HD4480 I2C
  • Блок декодирования семисегментного индикатора
Строки
  • Сложение строк
  • Сравнение строк
  • Длинна строки
  • Поиск подстроки
  • Получение подстроки
  • Получить символ из строки
  • Добавить Char к строке
Массивы
  • Запись элемента в массив
  • Получение элемента массива
  • Сумма элементов массива
  • Поиск элемента в массиве
Датчики
  • Ульразвуковой дальномер HC-SR04
  • Датчик температуры и влажности DHT11 (DHT21, DHT22)
  • Датчик температуры DS18x2x
  • IR Ressive
  • BMP-085
  • BH1750 Light Meter
SD карта
  • Запись переменной на SD карту
  • Выгрузка файла с SD карты
Конвертирование типов
  • Конвертация строк
  • Преобразование Float в Integer
  • -> Byte
  • -> Char
Микросхемы расширений
  • Расширитель выводов 74HC595
  • Драйвер светодиодов MAX7219
Операции с битами
  • Шифратор
  • Дешифратор
  • Чтение бита
  • Запись бита
Разное
  • Матричная клавиатура
  • Пьезо динамик
  • Сканирование шины OneWare
EEPROM
  • Запись в EEPROM
  • Чтение из EEPROM
Коммуникации
  • Блок отправки переменной через коммуникации
  • Прием переменной через коммуникации
  • Страница Web сервера
  • Web клиент
Готовые сервисы
  • Передача данных на narodmon.ru
  • Удалённое управление через RemoteXY

Более подробно о проекте я расскажу в последующих постах, а напоследок небольшое видео показывающее принципы работы в программе и возможность управления платой из приложения на смартфоне.

Вы можете помочь и перевести немного средств на развитие сайта

Ardublock


Графический Язык Программирования для Arduino

Руководство по использованию Ardublock Kit Ver 1.0

Что такое Ardublock

Ardublock это графический язык программирования для Arduino, предназначенный для непрограммистов и простой в использовании.

(напоминаем что программа в среде разработки Arduino IDE называется скетч)

Установка
Скачайте архив ardublock-all.jar
Откройте “Arduino IDE/Menu /Arduino/ Preferences”, там вы найдете строку “Sketchbook location”

3. Создайте папку “tools/ArduBlockTool/tool ” внутри папки “Arduino” в строке
“Sketch location” и скопируйте архив “ardublock-all.jar” в папку “tool”.

Если имя пользователя “abu,”

На Mac, /Users/abu/Documents/Arduino/tools/ArduBlockTool/tool/ardublock-all.jar

На Linux, /home/abu/sketchbook/tools/ArduBlockTool/tool/ardublock-all.jar

На Windows, C:\Users\abu\Documents\Arduino

4 Перезапустите Arduino IDE и у Вас должен появиться пункт “ArduBlock” в меню “Tool ”.

Обращайте внимание на написание названий папок прописными и строчными буквами.


Использование

Блоки ArduBlock разделены на несколько категорий.

Control
Блоки категории “Control” это управляющие блоки.

Цифры, константы и Переменные

Operators

Utilities

Эти блоки являются функциями, которые обычно используются в скетчах.

Bricks

Каждый блок данной категории изображает тип реального устройства, который вы можете напрямую подключить к вашему скетчу.

Pin

Эти блоки действуют как виртуальные контакты на плате Arduino.

Как программировать

1. Компиляция должна завершиться успешно. Если порт, указанный в среде Arduino или сама плата не обнаружены, то появляется окно с сообщением об ошибке.

2. Графические блоки с разъемами одинаковой формы можно соединить друг с другом.

Соединение устанавливается просто, для этого нужно перетащить один блок к тому, с которым Вы хотите его соединить.

3. Как только будет нажата кнопка “upload”, ArduBlock автоматически сгенерирует код Arduino который потом будет загружен на плату Arduino (при этом в окне скетчей среды разработки Arduino появится текст программы, полученной в ходе компиляции).

Как запустить программу

Простой вывод

1 Пример 1 — Здравствуй Мир (Hello World!)

1.1 Аппаратное подключение

Arduino подключается к выводу 13.

1.2 Функционирование

Светодиод будет мигать 1 раз в секунду.

1.3 Скетч

1.4 Загрузить

Примечание
Вы можете загрузить файл abp напрямую - все описанные здесь примеры можно скачать вместе с файлом описания среды Ardublock (на английском языке) в виде файлов графических скетчей с расширением abp.

Файл abp можно загрузить нажатием на кнопку «load».


После чего нужно указать скачанный файл и нажать кнопку «open».

2 Пример 2 — Сигнал тревоги

2.1 Аппаратное подключение


Digital Blue LED Light Module подключается к выводу 12.

2.2 Функционирование

Красный светодиод и синий светодиод будут загораться по очереди, как полицейская сирена. Эффект будет еще лучше, если вы накроете их полупрозрачной крышкой, или тканью.

2.3 Скетч

2.4 Загрузить

Простой ввод

3 Включает светодиод при нажатии кнопки

3.1 Аппаратное подключение

Digital White LED Light Module подключается к выводу 13.

3.2 Функционирование

Если нажата кнопка, загорается светодиод.

3.3 Скетч


3.4 Загрузить

4 Азбука Морзе

4.1 Аппаратное подключение

Digital RED LED Light Module подключается к выводу 13.
Digital Buzzer Module подключается к выводу 12.
Digital Push Button подключается к выводу 8.

4.2 Функционирование

Когда нажата кнопка, красный светодиод загорается и слышен звук. Период звучания похож на азбуку Морзе.

4.3 Скетч

4.4 Загрузить

Аналоговый ввод и вывод

5 Датчик вращения

5.1 Аппаратные установки

Analog Rotation Sensor V1 подключается к выводу A0.

5.2 Функционирование

В этой программе можно узнать значение угла поворота.
Когда Вы загрузите программу, Вы сможете переключиться на arduino IDE, нажмите на иконку монитора. Окна последовательного монитора покажут Вам угол поворота в значениях от 0 до 1023.

5.3 Скетч

5.4 Загрузить

6 Погасающий свет

6.1 Аппаратные установки

Digital White LED Light Module подключается к выводу 11.

6.2 Функционирование

Эта программа покажет вам как свет загорается и медленно угасает.

6.3 Скетч

6.4 Загрузить

7 Измерение шума 1

7.1 Аппаратные установки

Digital White LED Light Module подключается к выводу11.

7.2 Функционирование

Этот детектор может измерить уровень окружающего шума, светодиод будет светится сильнее, если звук громче.

7.3 Скетч


7.4 Загрузить

8 Измерение шума 2

8.1 Аппаратные установки

Digital White LED Light Module подключается к выводу 11.
Analog Sound Sensor подключается к выводу A0.

8.2 Функционирование

Этот детектор может измерить уровень окружающего шума, светодиод будет мигать быстрее, если звук громче.

8.3 Скетч


8.4 Загрузить