Вирусы размножаются только в клетке. Механизмы проникновения вируса в клетку хозяина
- Если я правильно понял, вирусы отличаются от микробов тем, что они намного меньше их?
Да, вирусы настолько малы, что проходят через мельчайшие поры фарфоровых фильтров, которые, как установил еще великий Пастер, отделяют живое от неживого. Через такие фильтры не проникают даже самые маленькие микробы.
- А могут ли вирусы размножаться?
Ответ на это только один: да, могут, хотя и с обязательной оговоркой - если только им удастся попасть внутрь живой клетки.
С момента открытия первых вирусов ученых не переставал занимать вопрос, еще не решенный окончательно и сейчас: какое же место в природе занимают эти мельчайшие создания? Для наглядности можно сопоставить длину некоторых живых существ: кит - 30 метров, мышь - 5 сантиметров, амеба - 50 микрон, вирус полиомиелита - 27 - 29 миллимикрон.
Таким образом, вирус полиомиелита примерно в миллиард раз меньше кита! Ничтожные размеры вирусов позволили некоторым ученым вообще усомниться в их принадлежности к живым существам. Однако большинство вирусологов согласиться с этим не могло. Они знали, что вирусы проникают внутрь живых клеток, активно там размножаются и производят новое потомство. Именно благодаря этой способности размножаться вирусы были отнесены к живым существам.
Еще со школьной скамьи все хорошо усвоили, что микробы размножаются на искусственных питательных средах. Достаточно внести в стерильный флакон с питательным бульоном небольшую капельку взвеси тех или иных микроорганизмов, как уже через несколько часов бульон помутнеет: под микроскопом можно будет обнаружить тысячи и тысячи новых микроорганизмов. А вот вирусы ни в одной, даже самой высококачественной, питательной среде размножаться не могут. Даже если эта среда содержит весь необходимый для жизни набор аминокислот, витаминов, солей. В этом радикальное отличие вирусов от микробов. Вирусу нужна полноценная живая клетка, и лишь в ней может он размножаться, используя уже готовый обмен веществ клетки.
Микробы способны в течение длительного времени жить или просто сохраняться, чтобы ожить в будущем, в естественных условиях: в земле, в воде, на поверхности любых предметов, например, на коже человека. Для них необходим минимум питательных веществ, а для возбудителя холеры достаточно простой воды в любом водоеме.
Вирусы же вне живых клеток сохраняются только непродолжительное время, лучше на холоде и гораздо хуже в тепле. Если летом на ярком солнечном свету вирусы погибают очень быстро и даже при комнатной температуре переживают максимум полчаса-час, то на арктическом морозе, под толщами льда и снега они способны сохраняться многие годы.
Факты, подтвержденные тысячами и тысячами научных наблюдений, свидетельствовали, что вне живого организма вирусы не размножаются. Отсутствовали аналогии между вирусными заболеваниями и эпидемиями брюшного тифа, вызванными зараженным молоком, или вспышками ботулизма, связанными с употреблением испорченных консервированных продуктов. Вирус должен был обязательно попасть (как правило, достаточно быстро) из живых клеток одного существа в новые чувствительные клетки другого существа.
При любом инфекционном процессе, вызванном вирусами, о болезни следует думать как о чем-то, что один человек получил от другого человека, одно животное от другого животного. Все симптомы болезни, которые вирус вызывает у зараженного человека, связаны с вовлечением в инфекционный процесс тех или иных групп клеток, чувствительных к вирусу и способных поддержать его размножение.
Вирусы, вызывающие обычную простуду, размножаются, как правило, в клетках верхнего дыхательного тракта. В результате начинается насморк и кашель. Вирус полиомиелита попадает в организм человека через рот и размножается исключительно в клетках тонкого кишечника. Оттуда проникает в нервную систему, где и поражает клетки, ведающие двигательными функциями мышц. В результате развивается паралич ног, рук и даже дыхательной мускулатуры.
В противоположность микробам для каждого вируса существует свой вполне постоянный и достаточно ограниченный круг животных, растений, насекомых и даже микробов, которых он поражает. Заражая живое существо, вирусы размножаются только в клетках определенных тканей или органов, а не в любом участке организма.
В 30-х годах почти одновременно появились в печати две научные статьи, одна из Англии, другая из Советского Союза. К. Смит и А. Смородинцев доказали, что грипп у людей вызывают вирусы, а не микробы, как это считалось раньше. С тех пор прошло более 40 лет. Выделено много вариантов вирусов гриппа, все они досконально изучены. Ученые подобрали удобную для изучения лабораторную модель - белую мышь. Установили, что в легких этих животных вирусы гриппа интенсивно размножаются. Однако это происходило, только когда вирус гриппа вводили мышке в нос. Если же ее пытались заразить инъекцией вирусной суспензии под кожу, внутривенно или в брюшную полость, вирус гриппа не приживлялся и не размножался.
- Если увидеть вирус внутри клетки с помощью микроскопа нельзя, то как это сделать?
К сожалению, обычный микроскоп, хотя он и увеличивает предметы более чем в тысячу раз, перед вирусом бессилен,
- Как же тогда получить «портрет» вируса, разглядеть его внутреннее устройство?
- Наука создала для этого электронный микроскоп, ультрацентрифугу и другие сложнейшие приборы.
Уже на первых этапах развития вирусологии ученые столкнулись с непреодолимой трудностью: увидеть вирусы с помощью микроскопа не удавалось. Изучали материалы, которые наверняка содержали живые вирусы, потому что с их помощью легко заражались лабораторные животные или растения, однако никаких вредоносных возбудителей там видно не было. Еще совсем недавно это считали одним из главных свойств вирусов и их отличий от микроорганизмов.
Большие усилия были затрачены для преодоления невидимости вирусов, делавшей их малодоступными для изучения. Путь к этой победе оказался достаточно долгим.
Трудность заключалась в том, что вирусы имеют ничтожно малые размеры - от 10 до 300 нанометров. Казалось бы, почему не сделать микроскоп с еще более сильными линзами, которые смогли бы увеличить предмет не в тысячу, а в 10 тысяч или 50 тысяч раз? Однако все упиралось в непреодолимость физических законов.
Законы оптики безоговорочно утверждают, что при любом освещении, которое используют в оптическом микроскопе, можно увидеть только объекты с поперечником больше длины волны света. У дневного света длина волны составляет 400-700 нанометров, следовательно, вирусы невозможно увидеть ни в один обычный микроскоп, каким бы совершенным он ни был.
На помощь вирусологам приходит электронный микроскоп, теорию устройства которого и первые образцы создают в конце 30-х годов, перед началом второй мировой войны, В. Зворыкин в США и А. Лебедев в СССР. В нем вместо видимого света используют поток электронов, а вместо увеличительных стекол - магнитные катушки. Пройдя через изучаемый предмет, тонкий электрический луч многократно расширяется магнитными полями катушек. Это увеличивает изображение в несколько сотен тысяч раз и позволяет увидеть его на специальном флюоресцирующем экране, подобном экрану телевизора. Так как длина волны электронного луча равна всего лишь 0,01 ангстрема (ангстрем равен 0,1 нанометра), то есть в 500 тысяч раз меньше, чем у видимого света, с помощью электронного микроскопа можно рассмотреть даже небольшие белковые молекулы.
Электронный микроскоп в его современных модификациях - это весьма точный и сложный механизм, стоимость которого измеряется десятками тысяч рублей. Несмотря на это, все лаборатории, изучающие структуру вирусов, имеют его на вооружении. С помощью электронного микроскопа ученым удается рассмотреть большинство известных вирусов, просвечивая их пучком электронов.
В последние годы изобретен сканирующий электронный микроскоп, принцип работы которого основан на том, что пучок электронов не проходит через предмет насквозь, а, падая на его поверхность под определенным углом, отражается от нее и после необходимого увеличения изображения попадает на флюоресцирующий экран. Сканирующий электронный микроскоп позволяет увидеть даже объемное изображение вирусов, сделать фотографии, портреты вирусов с деталями структуры их наружной поверхности.
Исследование морфологии (формы и строения) позволило разделить все известные сейчас вирусы на три группы.
Раньше всего были изучены крупные вирусы. Их размер 200-300 нанометров. К таким «великанам» относятся вирусы оспы человека и животных, вирус эктромелии белых мышей (это заболевание часто встречается в питомниках, где разводят столь необходимых науке лабораторных животных).
Ко второй группе относят вирусы, средняя величина которых от 50 до 150 нанометров. К ним принадлежит большинство вирусов растений, бактериофаги (вирусы, уничтожающие микробов), а также вирусы кори, свинки, гриппа. Сюда же относятся возбудители многих заболеваний верхних дыхательных путей, которые обычно называют «простудными», но которые на самом деле вызываются многочисленными вирусами.
Третья группа состоит из мельчайших вирусов (по величине они ненамного больше крупных белковых молекул) с размером частиц от 20 до 30 нанометров. В этой группе находятся вирусы полиомиелита, желтой лихорадки, энцефалитов и многие возбудители тропических лихорадок.
Ученые подсчитали, что если диаметр крупных вирусов превышает диаметр мелких всего лишь в 30 раз, то разница в их объеме составляет более 25 тысяч раз.
Подавляющая масса вирусных частиц (вирионов), которые поражают человека и животных, имеет форму шара, а у вирусов растений - вытянутый цилиндр. Хотя длина цилиндра вируса табачной мозаики достигает 350 нанометров, в оптическом микроскопе он все же невидим: поперечник цилиндра не превышает 15 нанометров, а такие величины в оптическом микроскопе разглядеть нельзя.
Исследования знаменитого теперь американского биохимика, лауреата Нобелевской премии У. Стенли начались в 1935 году и пролили затем свет на состав вирусов. Из сока растений, пораженных вирусом табачной мозаики, Стенли выделил высокомолекулярные соединения. После тщательной очистки выяснилось, что это сложная комбинация нуклеиновой кислоты и белка. Это вещество получило название нуклеопротеин. Оно могло даже заражать здоровые растения, вызывая болезнь - табачную мозаику.
Однако самые существенные различия между вирусами и микробами обнаружили, когда вирусы разобрали, если можно так выразиться, на составные части. Наука создала за последние годы много новых ферментов и реактивов, чтобы с более чем ювелирной точностью отделить друг от друга различные компоненты тела вируса или микробной клетки, получить их в чистом виде и достаточно точно изучить. Трудно даже вообразить себе эту точность, при которой ученые оперируют величинами, измеряемыми миллионными долями микрона!
Вирусы под различными углами просвечивали рентгеновскими лучами, измеряли величину электромагнитных колебаний их атомов, разделяли вирусные белки и нуклеиновые кислоты, определяли последовательность аминокислот в белке. Анализ всех фактов проводили с помощью сложнейших электронно-вычислительных машин за считанные дни, а не за долгие годы, как это делалось еще совсем недавно. И вот в результате такого скрупулезного исследования вирусов удалось установить совершенно неожиданный факт: у них нет никакого сходства с клеточной организацией, типичной для всех существующих на земле организмов!
В центре каждого вириона, образуя его сердцевину, лежит нуклеиновая кислота. Снаружи располагаются белковые молекулы, образующие своего рода защитное покрытие, так называемый «чехол». Они состоят из 20 хорошо известных аминокислот, из которых сотканы белковые молекулы всех живущих на земле существ.
Чтобы определить вес целой вирусной частицы или отдельных ее компонентов, используют ультрацентрифугу. Отличается она от обычной центрифуги тем, что здесь развивается скорость вращения порядка 100 тысяч оборотов в минуту и создается сила тяжести, превышающая земное притяжение в несколько сот тысяч раз.
Если в ультрацентрифугу поместить пробирку, содержащую концентрированный раствор сахара или какой-либо соли, а поверх него - суспензию вируса, то при определенных скоростях вращения вирус будет оседать, двигаться по направлению к дну пробирки, как бы продавливаясь через плотный слой лежащего ниже раствора. По глубине погружения вируса в плотный раствор сахара или соли можно вычислить молекулярный вес частицы или отдельных ее компонентов.
За единицу измерения приняли дальтон - вес самого маленького атома в природе - атома водорода. Оказалось, что у мелкого вируса полиомиелита вес вирусной РНК, являющейся геномом, хранителем наследственной информации вируса, не превышает 1-2 миллионов дальтон, у крупного вируса оспы достигает 200 миллионов. А средний вес генома бактериальной клетки достигает 1-10 биллионов дальтон.
Аминокислоты вирусного чехла соединены друг с другом последовательно в различных сочетаниях и образуют линейные цепочечные структуры (полипептиды). Их молекулярный вес варьирует от нескольких тысяч до сотен тысяч дальтон. Так, наружный слой вируса табачной мозаики образует 2200 «кирпичиков» белка совершенно идентичного состава, которые группируются в правильном порядке.
Структура различных вирусов отличается большей или меньшей степенью сложности. Если наиболее простые мелкие вирусы состоят только из обособленной молекулы РНК и белка, то более крупные обладают и наружной оболочкой, своего рода «упаковочным конвертом», в состав которого входят не только белки, но углеводы и липиды (жировые вещества).
Наиболее сложно устроены бактериофаги («пожиратели бактерий»). По форме они напоминают гимнастическую булаву. В их шаровидной головке помещена нуклеиновая кислота. Длинный отросток булавы представляет собой полый чехол, построенный из молекул белка. С помощью этого отростка бактериофаг прикрепляется к оболочке или к жгутикам бактерий, внедряет конец отростка в цитоплазму микроба и впрыскивает, как через шприц, свою нуклеиновую кислоту.
Белки, входящие в состав любого вируса, отличаются по структуре от белков поражаемых клеток. Каждый белок является антигеном, то есть веществом, способным вызвать образование антител. Разница в строении молекул вирусного белка и клеточного ведет к тому, что при введении животному эти белки вызывают образование совершенно разных антител, реагирующих только со своими антигенами. Антитела против клеточных белков соединяются только с ними и не соединяются с вирусами. Антитела против вируса не реагируют с белками клетки. Именно благодаря таким различиям специальные лабораторные приемы позволяют распознать присутствие вируса внутри зараженной клетки.
- Если у вирусов есть только нуклеиновая кислота и немного защитного белка, то как же они размножаются?
В этом главная загадка вирусов. Полное отсутствие ферментов, необходимых для синтеза белков и нуклеиновых кислот! А потомство воспроизводится с необычайной быстротой.
- Как же совместить несовместимое?
- Чтобы понять, нужно увидеть. Вирусологи затратили на это 15 лет.
Известно, что в клетках растений или животных наследственные функции несет дезоксирибонуклеиновая кислота (ДНК), а рибонуклеиновые кислоты (РНК) выполняют чисто вспомогательные. Однако у многих вирусов ДНК вообще отсутствует, геном состоит из молекулы РНК, причем не только в однонитевой, но и в двунитевой форме, чего нет у других живых существ на земле.
Простота организации вируса подтверждается небольшим количеством генетического вещества, а следовательно, и заключенного в нем объема генетической информации по сравнению с клеткой-хозяином, в которой вирус размножается и которую подчиняет своим потребностям.
Создается явное противоречие: вирус, имея объем генетической информации, в тысячу раз меньший, чем сложно организованная клетка, никогда не оказывается в подчиненном положении, а, наоборот, почти всегда побеждает. Это противоречит всем известным канонам. Понять это можно, лишь предположив, что у вирусов есть какие-то решающие преимущества перед клетками, позволяющие легко их завоевывать и обращать в своеобразное рабство.
До открытия мира вирусов длительные наблюдения за различными микробами и любыми одноклеточными организмами позволили установить, что все они размножаются совершенно одинаково: путем непрерывного, обычно прямого деления, когда из одной клетки образуются две, из них - четыре и так далее.
В течение многих десятилетий процесс размножения вирусов объясняли по аналогии с привычным и так хорошо изученным размножением у бактерий. Непонятной оставалась лишь огромная быстрота, с которой он идет.
Если бы число вирионов увеличивалось даже с наибольшей скоростью, доступной для бактериальной клетки, то есть три деления в час, потомство вируса проделало бы за три часа девять последовательных делений и составило бы всего тысячу частиц. Однако факты не укладывались в эти расчеты, и приходилось допустить, что каждое деление вируса на две дочерние частицы происходит не через 20 минут, а несоизмеримо быстрее.
Первым, кто подсчитал, сколько же вирусных частиц образуется в ходе размножения, был английский вирусолог К. Эндрюс. Заражая бактериофагами культуру бактерий, он установил, что одна частица бактериофага размножается в 100 тысяч раз быстрее бактерии, давая уже через три часа потомство в 100 миллионов частиц. Какого-либо объяснения для столь небывало быстрого темпа размножения вирусов никто в то время предложить не мог.
Решением этого интересного вопроса занялись многие ведущие вирусологи мира. Вначале установили, что вирион не разделяется на две дочерние частицы, как это происходит со всеми известными на земле клеточными формами. Далее выяснилось, что вирусы вообще не делятся и что у них есть свой особый механизм размножения, отличный от всех остальных живых существ. Оказалось, что каждая вирусная частица сразу же «рождает» потомство в количестве от ста до тысячи и более новых вирионов.
Во всех странах мира ученые в одиночку и целыми коллективами вкладывали свою лепту в познание невидимых процессов, происходивших внутри клеток буквально на молекулярном уровне. В итоге этих обширных исследований удалось составить достаточно четкую схему последовательных этапов размножения, или, как чаще говорят, репродукции вирусов.
Все начинается с избирательной адсорбции вируса на особых рецепторах, расположенных на поверхности клеток. После этого некоторые вирусы, обладающие специальным ферментом проникновения, способным растворить клеточную оболочку (например, нейраминидаза вируса гриппа), внедряются внутрь, другие же клетка поглощает сама, приняв их за вполне съедобный белок.
Проникнув внутрь клетки, вирус исчезает в прямом смысле этого слова, и никакими самыми чувствительными методами не удается обнаружить в клетке ни цельной частицы, ни отдельных ее компонентов. Ученые даже назвали эту стадию размножения вируса эклипсом, что соответствует русскому слову «затмение».
Разгадка этого парадокса получена совсем недавно. Оказалось, что в стадии эклипса вирусная частица распадается на белок и нуклеиновую кислоту. Такое «раздевание» вируса, как это ни странно, производит сама клетка с помощью ферментов. Они реагируют на проникший вирус как на кусочек белковой пищи и стараются его растворить и переварить.
Все основные события последующих часов, определяющие сущность процесса размножения вирусов, связаны не с белковым компонентом вируса, а с нуклеиновой кислотой. Именно она определяет весь ход дальнейшего размножения вирусов.
В нормальных условиях жизнь клетки регулируется деятельностью ее собственных нуклеиновых кислот, руководящих синтезом клеточных белков и других химических соединений. В хромосомах клетки содержатся многочисленные молекулы ДНК. Длинная молекула этой кислоты по своему строению несколько похожа на велосипедную цепь, закрученную в пространстве в виде спирали. Наследственная информация клетки о структуре всех без исключения белков, входящих в ее состав, записана в огромной полимерной нити, в двойной спирали молекулы ДНК. Она хранится в клеточном ядре.
Каждое звено цепочки ДНК - своеобразная ячейка, группа из трех генов, которая называется «оперон», так как она производит операцию выдачи заложенной в ней информации. Ведь каждый ген служит носителем какой-то определенной наследственной информации. В одном из генов содержится информация о структуре и последовательности подбора молекулярных кирпичиков для синтеза строго определенной белковой молекулы, или молекулы фермента, или молекулы новой нуклеиновой кислоты. Два других играют роли включателя и выключателя процесса считывания информации, заложенной в первом гене.
В нужный момент оперон получает импульс, поступивший от включающего гена-оператора. Происходит выдача информации, заложенной в ячейке и необходимой для синтеза новых молекул белка или нуклеиновой кислоты. С участков ДНК снимаются копии, чертежи поменьше. Это молекулы информационных РНК (иРНК). Они двигаются из ядра в цитоплазму, где находятся рибосомы - своеобразные станки по производству белка. В каждой клетке много тысяч рибосом. Диаметры каждой 200-300 ангстрем, а молекулярный вес 2-5 миллионов дальтон.
Из нескольких рибосом информационная РНК. формирует так называемый полисомный комплекс, своеобразную матрицу, на которой, как в типографии с набранного шрифта, начинается отпечатывание (репликация) новых копий белковых молекул. Транспортные РНК (тРНК) подвозят к рибосоме строительные блоки - аминокислоты. Находящиеся на рибосомах иРНК (они крупнее тРНК) служат шаблоном, определяющим последовательность стыковки друг за другом каждой из привезенных аминокислот. Каждая тРНК присоединяется к определенному участку иРНК. Так вдоль всей молекулы иРНК в соответствии с заложенным в ней кодом выстраиваются молекулы тРНК с аминокислотами. В рибосоме эти аминокислотные блоки сшиваются друг с другом, их цепочка полимеризуется в молекулу белка.
Одна молекула белка собирается на рибосоме за 20-30 секунд. Когда синтезируется достаточное количество таких молекул, в процесс вступает ген-регулятор. Он дает сигнал, участок ДНК, ведающий синтезом одного из белков, выключается и не функционирует до тех пор, пока в клетке опять не возникнет потребность в этом белке.
Следовательно, в хромосоме здоровой клетки все участки ДНК работают по принципу «включено» - «выключено», непрестанно регулируя количество и набор синтезируемых белков, необходимых клетке в каждый момент ее жизнедеятельности. Основа всех нормальных процессов клеточного синтеза заключается в том, что они контролируются и направляются информацией, передаваемой как бы по конвейеру от ядерной ДНК к исполнительной (информационной) РНК клеток.
Но вот в клетку проникла вирусная нуклеиновая кислота. Она сразу же берет весь основной обмен клетки, все процессы синтеза под свой контроль.
Враг захватил завод, который в мирное время делал тракторы. Используя те же станки, оборудование и сырьевые ресурсы, враги заставляют рабочих завода делать танки для своей армии, чтобы захватывать все новые и новые города. Внутри зараженной клетки происходит, по существу, аналогичный процесс.
Вирусная нуклеиновая кислота ведет себя в клетке как агрессор. Информация, закодированная в вирусной РНК (или ДНК), служит для клетки более обязательным и строгим «приказом», чем усилия собственных нуклеиновых кислот сохранять на каком-то уровне нормальную физиологическую деятельность организма. В течение многих часов, а иногда и дней после зараженная вирусная нуклеиновая кислота направляет все строительные запасы захваченной клетки на создание сотен и тысяч новых вирусных частиц.
Клетка превращается в фабрику по сборке своих убийц. Именно убийц, потому что вирусное потомство стремится выйти наружу и разрывает или расплавляет при этом клеточную оболочку, наступает гибель клетки-хозяина.
Вирус использует строительные ресурсы и ферментные системы клетки для своих нужд, а затем уничтожает ее, чтобы на следующем этапе инфекции заразить, а следовательно, и уничтожить сотни и даже тысячи новых клеток.
После заражения клеток различными вирусами в первую очередь формируется особый белок (ученые назвали его белок-ингибитор), подавляющий нормальное функционирование клеточных ДНК. Он прекращает передачу информации, необходимой для нормальных клеточных синтетических процессов.
Примерно в это же время формируется фермент, разрывающий полисомные комплексы, на которых шла сборка клеточных белков. Теперь уже клетка собственных белков не производит. Кроме того, и это является самым важным, синтезируется фермент полимераза (другое название - синтетаза), необходимый для снятия копий с внедрившейся в клетку вирусной РНК.
Для дальнейшей судьбы вируса именно стадия образования полимеразы является жизненно необходимой, потому что копии РНК будут использованы в качестве начинки при сборке новых вирионов. Синтезированные в клетке специфические вирусные РНК служат также матрицами, на которых строятся белковые части вириона - его капсомеры.
Предполагают, что молекулы нуклеиновой кислоты для будущих вирусных частиц строятся в ядре зараженной клетки, а белковые футляры - в цитоплазме. Затем происходит формирование «полного», то есть зрелого, вируса. На внутренней поверхности клеточной оболочки завершается объединение вирусной нуклеиновой кислоты (РНК или ДНК) с белковым чехлом. Этот процесс идет одновременно во многих участках и заканчивается созреванием большой массы высокозаразных частиц.
Иногда в клетках вырабатывается больше молекул одного биополимера, чем другого. Если в зараженной клетке сформировался избыток вирусного белка, его молекулы образуют оболочку вируса, не начиненную РНК (которой для этого просто не хватило). Эти структуры, называемые «неполным» вирусом, выходят из клетки, и их можно увидеть в электронном микроскопе. Они похожи на бублик с дыркой посредине. Естественно, что такой «неполный» вирус не обладает инфекционными свойствами, которые полностью зависят только от РНК.
- Итак, инфекционные свойства вируса связаны с его нуклеиновой кислотой.
- Да, и это было доказано в нескольких крупнейших лабораториях мира.
- А какова же роль белка?
- Он защищает нуклеиновую кислоту от внешних воздействий и помогает вирусу внедриться в клетку.
Четверть века назад, в 1952 году, известнейшими американскими биохимиками Э. Херши и М. Чейз при изучении бактериофагов впервые было показано, что нуклеиновые кислоты играют главную роль в репродукции вирусов. В отличие от всех остальных вирусов бактериофаги не проникают в клетку своего хозяина - микроба, а лишь прикрепляются к его оболочке. Наблюдая с помощью электронного микроскопа за различными стадиями взаимодействия между бактериофагами и бактериями, ученым удалось увидеть, как фаг вводит внутрь микроба свою нуклеиновую кислоту. Весь белковый чехол, которым бактериофаг прикрепился к оболочке микроба, остается снаружи. Фотографии, полученные учеными, обошли весь мир, опровергая прежние утверждения о ведущей роли белка в передаче наследственной информации.
Но ведь все, что касается бактериофага, не обязательно должно повторяться при репродукции других, устроенных по-иному вирусов, утверждали скептики, у которых в голове не укладывалось, что из одной молекулы вирусной РНК в клетке может одновременно возникнуть тысяча и более новых вирусов. И вот в 1956 году X. Френкель-Конрад в США и одновременно с ним А. Гирер и Г. Шрамм в ФРГ сделали важное открытие, за которое они позднее получили Нобелевскую премию. Разрушив белковый компонент вирусной частицы табачной мозаики крепкой карболовой кислотой (фенолом), они выделили РНК и очистили ее. Полученная РНК не содержала даже следов белка. Тем не менее введение ее в листья здоровых растений вызвало развитие типичной мозаичной болезни.
Сам по себе факт выделения заразного компонента вируса (его нуклеиновой кислоты) с помощью карболки, широко используемой в практической дезинфекции для разрушения самых устойчивых микроорганизмов, казался чем-то невероятным. Более того, нуклеиновую кислоту, полученную после сжигания фенолом белковых молекул вириона, осаждали и длительно хранили в чистом спирте, который также является сильнейшим дезинфицирующим средством. Несмотря на эти вреднейшие воздействия, совершенно несовместимые с существовавшими в медицине понятиями о жизни, вирусная нуклеиновая кислота отлично сохраняла свою заразительность для клеток восприимчивых растений табака.
В последние годы из многих мелких вирусов животных и человека (полиомиелит, клещевой энцефалит, вирусы, вызывающие злокачественные перерождения тканей) также удалось выделить рибонуклеиновые кислоты, обладавшие заразными свойствами. Такие вирусные РНК стали называть инфекционными, поскольку они вызывали развитие болезни в организме восприимчивых животных или же в чувствительных культурах ткани без участия вирусных частиц или их белка. Причем после каждого такого искусственного заражения с помощью инфекционной РНК в клетках исследуемого объекта появлялись вполне полноценные вирусные частицы.
Первоначально открытие инфекционных нуклеиновых кислот было встречено с недоверием. Многие, даже очень солидные, ученые-биологи думали, что инфекционный процесс вызывают не сами нуклеиновые кислоты, а сохранившиеся в растворе частицы живого вируса или примеси белка. Однако такие сомнения были быстро опровергнуты. X. Френкель-Конрад использовал самые чувствительные методы химического анализа, способные обнаружить даже отдельные белковые молекулы. Все пробы на белок были отрицательными: препараты содержали только нуклеиновую кислоту.
Теперь следовало доказать, что именно она несет в себе заразительность для здоровых растений. Для этого А. Гирер и Г. Шрамм провели специальные контрольные исследования, которые показали, что добавление фермента рибонуклеазы к препарату вирусной РНК полностью разрушало его инфекционные свойства. Это подтвердило, что вся заразительность заключена в обследуемой РНК, так как рнбонуклеаза совершенно безвредна для вирусной частицы.
Исследователи установили также, что активность вирусных нуклеиновых кислот не изменялась и после добавления иммунной сыворотки. Если бы после обработки фенолом в препарате вирусной РНК сохранились даже отдельные неубитые вирусные частицы, иммунная сыворотка подавила бы их биологическую активность.
Чтобы окончательно убедиться в своей правоте, исследователи провели дополнительные испытания. Они установили, что препараты очищенной вирусной РНК крайне нестойки и быстро разрушаются даже при непродолжительном хранении в термостате или в леднике.
Напротив, частицы исходного вируса табачной мозаики сохраняли высокую устойчивость даже после продолжительного хранения в тех же условиях. Поэтому, считали ученые, вирусные частицы было бы легко обнаружить через несколько дней после хранения на леднике, когда нежные нуклеиновые кислоты полностью разрушатся. Однако все попытки оказались безуспешными: с гибелью РНК исчезала инфекционная активность очищенного препарата. Так было окончательно доказано, что именно выделенная из вируса РНК, а не остаточный вирус, вызывала заражение листьев растений.
Очищенные вирусные нуклеиновые кислоты способны заражать даже ткани, которые в естественных условиях полностью невосприимчивы, то есть устойчивы, нечувствительны к цельному вирусу. Например, вирус полиомиелита прекрасно размножается в тканевых культурах, приготовленных из клеток человека. Ведь как раз у человека этот вирус вызывает поражение спинного мозга, параличи и смерть. В то же время этот вирус не способен заразить тканевые культуры, приготовленные из клеток курицы, так же как он не может заразить и курицу.
Выделенную из вируса полиомиелита инфекционную РНК легко удалось ввести в куриные клетки, после чего в них произошло формирование сотен полноценных зрелых частиц вируса. Но в невосприимчивой ткани вирусная инфекция на этом и прекращалась. Новые вирионы, которые могли бы оказаться высокозаразными для чувствительных тканей, были часто не способны даже выйти из нечувствительных к ним клеток.
Однако с помощью электронного микроскопа ученым удалось увидеть вирусные частицы внутри клеток и выделить вирус из клеток, разрушив их ультразвуком. Такой вирус прекрасно размножался, если его переносили в другую, восприимчивую ткань.
Если учесть полную искусственность опытов с очищенной вирусной нуклеиновой кислотой, с помощью которой ученые старались заразить растения, животных или тканевые культуры, становится понятным, почему активность инфекционной вирусной РНК несравненно ниже активности исходных частиц. Для заражения культуры ткани нужно взять РНК, выделенную из 10^6- 10^8 вирусных частиц или всего 4-10 вирионов. Разница огромная, и величины несопоставимые.
В естественных условиях «голая» РНК никогда не проникает в клетки извне, через клеточную оболочку. Нуклеиновые кислоты всегда попадают сюда только в составе цельной вирусной частицы, которая освобождает вирусную РНК (или ДНК) лишь внутри зараженной клетки. Хотя вирусные нуклеиновые кислоты и играют ведущую роль в размножении вирусов, однако они не обладают способностью самостоятельно переходить от клетки к клетке.
- Как же организм животного или человека защищается от вируса, с которым никогда раньше не встречался?
Первый этап, как правило, заканчивается гибелью зараженных клеток. В результате образуется несколько тысяч новых вирусов, затем миллион, миллиард, а потом организм должен погибнуть.
- Но в реальных условиях этого не происходит. Заболевший обычно выздоравливает.
Действительно, даже при тяжелейших вирусных инфекциях, как оспа или клещевой энцефалит, погибают не все заразившиеся люди, а такие болезни, как свинка, корь, грипп, для большинства оканчиваются благополучно.
Обороняясь от возбудителей заразных болезней, организм вырабатывает, как известно, высокоэффективные защитные вещества - антитела. Против каждого возбудителя, будь то бактерия или вирус, образуются свои антитела. Они соединяются только со «своим» возбудителем и нейтрализуют его активность, совершенно не действуя на все остальные.
Каждому этапу развития любой науки, в том числе и медицины, соответствует определенный уровень знаний. Поэтому многие первоначальные положения, своего рода аксиомы вирусологии основывались на знаниях, полученных ранее микробиологами, изучавшими противомикробный иммунитет. Вот почему вирусологи довольно долго считали, что выздоровление обеспечивается только специфическим иммунитетом, его антителами, которые образуются в ответ на проникший в организм и размножающийся там вирус. Однако существовало определенное противоречие, на которое долго старались не обращать внимания, хотя оно буквально бросалось в глаза.
Совершенно непонятным оказывался такой хорошо известный факт: антитела образуются и поступают в кровь через несколько дней после заражения. Именно такой срок требуется организму, чтобы ответить на агрессию и выработать необходимые количества защитных антител, способных связать вирус. Но, ведь зная необычайно высокий темп репродукции вируса в зараженных клетках, легко можно подсчитать, что в первые два-три дня болезни должны образовываться неисчислимые полчища новых вирусов. Следовательно, антитела простонапросто опоздают и не смогут нейтрализовать инфекцию!
Кроме того, ученые показали, что антитела действуют, только когда вирус находится вне клетки: в крови, в лимфе, - и не способны проникать внутрь клеток, зараженных вирусом, хотя и препятствуют внедрению вирусов в чувствительную ткань.
Очевидно, есть какие-то еще неизвестные способы защиты, которые именно в первые часы после заражения должны, во-первых, ограничить размножение вируса внутри клетки, а затем и воспрепятствовать заражению новых клеток, как бы связать вирус по рукам и ногам до подхода основной армии защиты - антител.
Можно думать, что уже на самых ранних этапах эволюции живых существ на поверхности нашей планеты началась неравная борьба между клеточными организмами и мельчайшими их врагами - вирусами. Учитывая необычайно быстрый темп размножения вируса, такая борьба должна была бы окончиться их несомненной победой над более сложно организованными многоклеточными организмами. Чтобы как-то защитить себя от бурно размножающихся противников, позвоночные животные многие и многие тысячи лет назад выработали универсальный механизм защиты от вирусной агрессии. Эта дополнительная (но против вирусной инфекции, может быть, и основная) защита проявляется и действует на уровне клеток. Она резко подавляет темп размножения вирусов, замедляет скорость развития инфекционного процесса.
В середине 30-х годов два американских исследователя, Г. Финдлей и Ф. Маккаллум, проводили опыты на обезьянах, изучая разновидности вирусов желтой лихорадки, вызывавших или не дававших развития энцефалитов у этих животных. Вирусы нередко были причиной гибели людей, живших в Африке, и особенно приезжавших на Африканский континент европейцев: путешественников, моряков и поселенцев. Обезьяны, так же как и люди, погибали от этих вирусов, причем нередко развивались тяжелейшие параличи.
Однажды, не располагая достаточным числом обезьян, ученые заразили смертельным вирусом животных, которым несколько дней назад была введена ослабленная разновидность вируса желтой лихорадки. Произошло непонятное и поистине чудесное явление: обезьяны не только не погибли, но даже не заболели. Опыты следовали за опытами, и результаты, повторяя друг друга, позволяли сделать вывод, что найдена совершенно новая возможность спасти животных от смертельных вирусов. Для этого нужно ввести им незадолго до заражения другой, малоопасный вирус, который даже может быть вирусом совершенно иного вида.
Таким образом, было сделано важнейшее открытие, а в медицине появился новый термин «интерференция» вирусов, происшедший от английского слова «помеха», «препятствие».
С самого начала этих работ ученым было ясно, что природа интерференции связана вовсе не с иммунитетом, а с каким-то «неспецифическим» механизмом. Однако в течение долгих 20 лет ученые объясняли защитный эффект простой конкуренцией между двумя соперниками. Думали, что первый по порядку «несмертельный» вирус отнимает у второго «злокачественного» вируса питательные ресурсы зараженного организма, а это подтверждалось плохим размножением смертельного вируса, введенного во вторую очередь.
В 1957 году английский ученый А. Айзекс и его молодая практикантка доктор Д. Линденман показали, что причина интерференции совсем другая. Исследователи изучали поглощение вируса клетками из окружающей питательной среды и ожидали увидеть снижение интерферирующей силы среды. Однако произошло обратное. Но ученые, к счастью, не прошли мимо этого непонятного поначалу факта, а стали искать вызвавшую его причину. Они установили, что если внести в культуру ткани инактивированный теплом вирус гриппа, то зараженные клетки начинают вырабатывать какое-то белковое вещество и выделять его в окружающую среду. В незараженных клетках такого белка обнаружить не удалось.
Айзекс назвал открытый им белок интерфероном и этим обессмертил свое имя.
Интерферон обладал чудесными свойствами идеального противовирусного лекарства, и его открытие явилось крупным событием в биологии и медицине. Правда, вначале оно было встречено с недоверием, но уже через два-три года вызвало широкий поток исследований во всех странах мира. Ученые пытались выяснить природу интерферона, понять механизм его действия на вирусы и постараться использовать для борьбы с вирусными болезнями у людей и животных.
Молекулы интерферона наделены весьма важными и интересными свойствами: они полностью лишены какого-либо побочного действия на организм. Защита от вирусов наблюдается в клетках только того вида животных, которые выработали интерферон. В отличие от антител он подавляет размножение практически всех известных вирусов. Активность самых лучших антибиотиков (стрептомицина, пенициллина, эритромицина и других) распространяется на многие возбудители болезней бактериальной природы, но, к сожалению, не на вирусы.
Как теперь установлено, в первые дни после заражения от смертельного воздействия любого вируса организм защищает именно интерферон. Это очень важно в тех случаях, когда организм встречается с каким-либо вирусом впервые в жизни и не имеет к нему антител. Интерферон играет роль как бы пограничной заставы, которая принимает на себя удар противника, пока не подтянутся основные защитные войска.
Особенно это ценно при таких инфекциях, как грипп и простудные заболевания, которые длятся лишь три-пять дней. Тогда именно интерферон способствует выздоровлению, поскольку антитела образуются поздно, воздействовать на вирус не успевают и играют свою защитную роль только при повторной встрече организма с тем же вирусом.
Вскоре после того, как вирус прикрепится к поверхности клеток, они «распознают» в его лице не только полезный питательный белок, но и своего смертельного врага. Вот это-то раннее «распознавание» и позволяет организму достаточно быстро подготовить эффективную оборону, чтобы подавить вирусную инфекцию или хотя бы ограничить ее уже в первые часы после начала болезни.
Исследование тончайших процессов, происходящих на молекулярном уровне внутри живых клеток, потребовало довольно длительного времени. И если интерферон был открыт в Англии, то объяснить, как он образуется, удалось в Америке.
Вирусолог С. Барон из Института аллергии и инфекционных болезней, расположенного в городе Бетесда,
близ Вашингтона, много лет посвятил изучению всего двух вопросов: почему в зараженных вирусами клетках образуется интерферон и как это происходит? Вдумайтесь! Всего два вопроса, но каких важных! Если на них ответить, откроется путь к пониманию главной задачи: способу борьбы с любыми вирусными инфекциями.
Ученому удалось установить, что, как только вирус проникает в цитоплазму клетки и начинает там «раздеваться», сбрасывая белковый чехол и выделяя нуклеиновую кислоту, клетка воспринимает эти действия за сигнал тревоги, оповещающий о вторжении смертельного врага, против которого немедленно надо готовить активнейшее оружие.
С. Барон доказал также, что начало синтеза интерферона совпадает с периодом, когда в зараженной клетке вирусная РНК становится матрицей, с которой печатаются новые РНК. Формирующиеся в ходе этого процесса двунитевые РНК и служат стимулом для образования интерферона. А происходит это потому, что в здоровых клетках никогда не бывает двунитевых РНК, а только однонитевые. Двунитевая форма РНК чужеродна для клетки, а это как раз и необходимо, чтобы подать сигнал опасности. Таков был ответ на вопрос «почему».
Ответ на второй вопрос - «как» - потребовал гораздо больше времени. Оказалось, что, когда клетка получает сигнал опасности, немедленно включается специальный ген-оператор. Начинается синтез информационной РНК, а затем на ее матрице в полисомах клетки происходит сборка относительно простых и легких по весу белковых молекул, которые мы называем интерфероном. В 1974 году ученые установили, что ДНК, отвечающие за образование интерферона, расположены у человека только в хромосомах № 2 и 5.
Период образования многих и многих тысяч молекул интерферона в зараженной клетке обычно занимает от двух до шести часов. Значит, он намного короче, чем период репродукции вирусного потомства. А раз так, клетка успевает опередить агрессора и построить оружие раньше, чем масса родившихся вирусов выйдет и набросится на новые беззащитные еще клетки.
Небольшая молекула интерферона может легко проходить через клеточные оболочки. Пока в зараженной клетке идет размножение вируса, интерферон уже успевает образоваться, выйти из этой зараженной клетки в кровь, в лимфу, в окружающее пространство и проникнуть в другие клетки.
Хотя к синтезу интерферона способны многие группы клеток соединительной и эпителиальной ткани, особенно активно выполняют эту работу клетки белой крови (лимфоциты).
Основатель химиотерапии микробных инфекций немецкий бактериолог П. Эрлих мечтал когда-то о синтезе химических соединений, способных излечивать любые заразные болезни без вреда для больных. Интерферон, бесспорно, первое такое идеальное лекарство.
По выраженности лечебного действия с интерфероном не могут конкурировать даже лучшие антибиотики. Исследователи рассчитали, что для лечения тяжелого гриппа вполне достаточно ввести больному в несколько приемов всего один миллиграмм чистого интерферона. Для лечения же бактериальных инфекционных заболеваний применяют, как правило, ежедневно по нескольку граммов того или иного антибиотика.
Каким же образом действует интерферон на вирус? Может ли он соединяться с вирусом и нейтрализовать его, как это делают антитела?
- Нет, инферферон с вирусом не соединяется, и в этом одно из его решающих отличий от антител.
Но, может быть, интерферон не дает вирусу адсорбироваться на клеточной оболочке, или как-то мешает ему проникнуть внутрь клетки, или, действуя на вирусную нуклеиновую кислоту, инактивирует ее?
Вот здесь вы несколько ближе к истине. Люди часто стараются найти уже известные аналогии для объяснения нового и непонятного. Так произошло и с интерфероном, действие которого на вирусы совершенно необычное.
Многие ученые в разных странах мира обнаружили, что интерферон наделен необычайно широким «спектром» противовирусной активности: он подавляет размножение большинства известных вирусов. Препятствует размножению вируса оспы в коже, вируса гриппа в легких, вируса энцефалита в мозгу, вируса лейкоза в костном мозге или в лейкоцитах крови.
Уже первые поиски установили, что непосредственного воздействия на вирус интерферон не оказывает. Действительно, пробовали соединить в пробирке вирусную суспензию с концентрированными препаратами интерферона, а затем заразить этой смесью животное. И убедились, что инфекционный процесс развивается с такой же интенсивностью, как и при использовании вируса без интерферона.
Расшифровали механизм действия интерферона совсем недавно. И сделали это американский вирусолог С. Барон и наши советские ученые, москвичи Ф. Ершов и В. Жданов в Институте вирусологии имени Д. Ивановского. Они доказали, что весь процесс защиты организма от внедрившегося вируса происходит внутри еще не зараженных клеток, а в 1975 году группа ученых Йельского университета (США) установила, что в ядрах клеток человека, в хромосоме № 21, находится специальная группа генов (специфический участок ДНК, с которым соединяется молекула интерферона, как только она проникает в клетку), отвечающая за этот процесс.
Небольшая молекула интерферона способна свободно проходить через клеточные оболочки и, проникая в цитоплазму, воздействовать на синтетический аппарат клетки так, что он становится непригодным для размножения вирусов. Этот механизм коренным образом отличается от действия антител, которые для выполнения своей функции должны обязательно соединиться с вирусами, находящимися вне клетки. Только таким путем антитела препятствуют переходу вируса от зараженной клетки к здоровой.
К сожалению, процессы, происходящие на уровне таких мелких молекул, какой является интерферон, нельзя увидеть. Но тончайшие методы современной вирусологии и генетики позволяют косвенно проследить за ходом этих процессов.
В. Жданов, Ф. Ершов и их сотрудники установили, что интерферон как бы пробуждает от спячки группу генов, отвечающих за синтез особых информационных РНК, с помощью которых клетка быстро строит антивирусный белок. Дальше события разворачиваются совершенно необычным образом. Вновь синтезированный антивирусный белок используется клеткой не для нейтрализации самого вируса, а для того, чтобы нарушить так хитро налаженный механизм печатания копий вирусных РНК и сделать невозможным воспроизводство вирусного потомства. Все синтетические процессы, необходимые для нормального функционирования самой клетки, сохраняются.
Каждая молекула антивирусного белка присоединяется к одной из рибосом, слегка изменяя этим ее конфигурацию. Такие рибосомы по-прежнему сохраняют способность соединяться под влиянием информационных РНК в полигамные комплексы и строить новые клеточные белки. Однако если полисома сформируется под воздействием вирусной информационной РНК, то дальнейшей передачи информации не будет и синтеза вирусных белков не произойдет.
Многие ученые говорили о преимущественной защитной роли интерферона при таких кратковременных и остротекущих инфекциях, как грипп. В Научно-исследовательском институте эпидемиологии и микробиологии имени Л. Пастера обследовали большое число сывороток крови людей, заболевших гриппом и лечившихся в больнице имени С. Боткина в Ленинграде. Оказалось, что чем больше интерферона образовывалось в первые дни болезни, тем легче протекал грипп и тем быстрее поправлялся больной. У некоторых людей интерферон вообще препятствовал развитию болезни, хотя скрытая инфекция была и это подтверждалось образованием антител.
Полезное влияние интерферона зависит от степени болезнетворности, зловредности вируса для организма, а также от общего состояния здоровья человека. Защитный эффект интерферона снижается, если возбудитель вирусной инфекции чрезмерно, разрушителен, токсичен, а человек ослаблен переутомлением, нервными переживаниями, хроническими заболеваниями сердца, печени, легких.
Когда система интерферона не срабатывала, грипп становился фатальным для больного. Именно это доказал известный английский ученый Д. Тиррелл, обследуя большое число людей, для которых грипп стал причиной смерти. Все они погибли в первые дни заболевания гриппом. Ни у одного из этих людей не удалось обнаружить интерферон ни в легких, ни в крови.
И наоборот, можно считать, что благополучный исход вирусной инфекции является результатом активной оборонительной деятельности зараженных клеток, вырабатывающих интерферон, который нарушает синтез новых вирусных частиц и ликвидирует опасность появления и распространения по организму новых генераций вируса.
Ученые не только доказали, что одним из факторов, определяющих сопротивляемость организма вирусной инфекции, служит его способность вырабатывать интерферон, но и что у разных людей она неодинакова. Большую роль играют врожденные особенности организма. Около трети населения обладают характерными наследственными чертами, вследствие которых их организм плохо производит интерферон. Зависит эта способность и от возраста: интерферон слабее вырабатывается у детей до двухлетнего возраста, а также у пожилых людей старше 60-65 лет.
Формирование интерферона идет по-разному в зависимости от внешних условий, например, погоды, температуры воздуха, времени года. Зимой или осенью организм медленнее производит интерферон и в меньших количествах, чем в теплое время. Поэтому летом люди гораздо реже страдают от гриппа и других заболеваний верхнего дыхательного тракта.
Таким образом, фронт борьбы с вирусами пролегает внутри живых клеток. Очень сложен путь его познания ч долог. Исследователи находятся сейчас лишь в самом его начале. Однако новые факты, которыми человечество овладело совсем недавно, помогли разгадать, пожалуй, самую сложную загадку - универсальный механизм, с помощью которого природа помогла всем живущим на земле существам одерживать победу над вирусами.
- Теоретически все, кажется, ясно. Но как можно приготовить много интерферона?
- Для этого в лабораториях уже отработаны необходимые методы.
- Однако еще интереснее овладеть секретом запуска «машины», производящей интерферон в организме!
- Согласен: это путь к победе над вирусами.
С открытием интерферона появились новые перспективы борьбы с вирусными инфекциями. Его стали рассматривать не только как ценное дополнение к старым, хорошо испытанным средствам предупреждения вирусных болезней (живым или убитым вакцинам), но и как самостоятельное лечебное или профилактическое средство. Открылась весьма заманчивая перспектива создать препараты, с помощью которых можно повысить естественную невосприимчивость организма к вирусным инфекциям.
Существуют два пути практического использования интерферона для профилактики или лечения вирусных заболеваний. Можно вводить людям готовый препарат высокоактивного интерферона, изготовленный в лабораториях или на специальной биологической фабрике. Однако интерферон, введенный извне, быстро разрушается. Поэтому, чтобы удерживать его концентрацию па должном уровне, приходится вводить интерферон каждые три-четыре часа. В случае тяжелого заболевания такая тактика оправдана. А как воспользоваться интерфероном в целях профилактики? Ведь он особенно эффективен в первые часы внедрения вируса, когда тот только-только начинает размножаться. Однако угадать этот момент весьма трудно, а чаще вообще невозможно.
Кроме того, можно заставить организм человека продуцировать интерферон, используя доброкачественные, безвредные вирусы или некоторые синтетические вещества. Вызванный ими к жизни интерферон будет сражаться сразу на многих фронтах против возбудителей любых вирусных болезней, какой бы облик они ни принимали.
Ученые установили, что для воздействия на вирусную инфекцию, например грипп, необходимо, чтобы препарат интерферона содержал не менее 500 тысяч международных единиц в одном миллилитре препарата. Производство таких высокоактивных продуктов началось несколько лет назад в Финляндии, Японии и в нашей стране. В качестве сырья используют белые кровяные тельца, лейкоциты человека, выделенные с помощью особых методов из крови доноров.
Именно доноры являются теми людьми, без которых невозможно пока приготовить достаточно большое количество интерферона. Сдавая свою кровь безвозмездно или за определенную плату, доноры не только помогают больным, нуждающимся в переливании свежей человеческой крови после уличной травмы, тяжелой болезни или хирургической операции, но и способствуют приготовлению ценного лекарственного вещества, действие которого направлено на борьбу с вирусными болезнями.
Выделенные из крови доноров лейкоциты заражают безвредным для людей вирусом парагриппа мышей (который называется вирусом «Сендай» по имени японского города, где был выделен). Клетки начинают интенсивно вырабатывать интерферон, и уже через 15-18 часов в окружающей лейкоциты питательной среде накапливаются значительные его количества.
Используя ряд весьма трудоемких и очень точных процедур, из жидкости удаляют все лейкоциты и вредные для организма человека загрязняющие белки. Па колонках со специальными смолами, которые пропускают интерферон, но задерживают вредные балластные продукты, препарат очищают.
До сих пор по-настоящему массовое производство интерферона затруднялось из-за недостатка свежей крови людей. Поэтому весьма важно, чтобы число доноров увеличивалось, чтобы можно было получить достаточно большое количество лейкоцитов для производства интерферона.
Одним из самых больших энтузиастов получения лейкоцитарного интерферона стал финский вирусолог К Кантел. Он начал эту работу в 1963 году и через 10 лет организовал в Финляндии массовое производство препарата, который обладал необычайно высокой активностью: в каждом миллиграмме содержалось от одного до десяти миллионов единиц интерферона. С помощью этого препарата вылечивали больных с герпесом глаз, с хроническим гепатитом. Но наибольшего успеха достигли, когда удалось предупредить развитие метастазов у нескольких пациентов со смертельной саркомой костей. Начали также опыты по лечению больных лейкозами (раком крови), раком шейки матки и другими злокачественными новообразованиями. К 1981 году получили первые результаты, которые убедительно говорили, что рак и саркому можно вылечить у значительной части больных, если начать лечение интерфероном как можно раньше. Правда, лечить приходится достаточно долго, да и высокоактивного интерферона требуется очень много: на одного больного расходовали интерферон, полученный из крови 200-300 доноров.
Нужен был какой-то иной источник интерферона, более дешевый и не лимитированный в количестве, как лейкоциты крови людей - доноров. Сначала попытались использовать для этих целей культуры живых клеток, которые можно было бы непрерывно размножать в лабораторных условиях.
Такие клетки найдены, и их пересевы удается проводить до 40-60 и более раз. Каждые два-три дня в процессе деления их количество увеличивается в несколько раз. Клетки рассевают снова и снова, на них воздействуют вирусом - продуцентом интерферона, а затем собирают необходимый урожай готового сырья.
Для этого пользуются несколькими клеточными культурами, но препарат либо получается слишком дорогим, либо содержит примесь опухолеродных вирусов, от которых еще не научились избавляться.
Самым интересным достижением последних лет стал метод генной инженерии, основанный на возможности получения в искусственных условиях точных копий гена, регулирующего синтез интерферона в лейкоцитах.
Вкратце этот процесс выглядит следующим образом: сначала в суспензии донорских лейкоцитов «запускают» процесс синтеза интерферона. Когда в клетках накопится большое количество информационных РНК, являющихся, как мы уже знаем, зеркальным отпечатком интерферонового гена и одновременно матрицей, на которой в лейкоците будут «строиться» молекулы интерферона, их экстрагируют, извлекают из лейкоцитов. Затем с помощью очень сложных биохимических процессов проводят синтез ДНК, являющихся зеркальной копией этих РНК, а следовательно, точном копией интерферонового гена.
Теперь, когда ген получен, нужно заставить его работать. Внимание ученых остановилось на микробной клетке - обычной кишечной палочке. Вся трудность заключалась в том, чтобы «внедрить» этот ничтожно малый ген в тело микроба да еще заставить его там функционировать. Совместными усилиями ленинградские вирусологи в институте имени Пастера и латвийские исследователи из института органического синтеза Академии наук Латвии и института микробиологии имени А. Кирхенштейна в Риге справились и с этой задачей.
С помощью особых ферментов теперь удается «разрезать» ДНК в хромосомах клетки почти в любом желаемом участке, а затем с помощью других ферментов вклеить туда полученный в лаборатории искусственный фрагмент ДНК, в данном случае интерфероновый ген. Так были получены кишечные палочки, в наследственное вещество которых удалось вставить ген, ведающий синтезом человеческого интерферона. Такие микробы могут жить и размножаться в искусственных условиях, продуцируя человеческий интерферон, который столь необходим нашей медицине.
Около 10 лет назад советские вирусологи решили найти средство заставить организм обеспечивать себя интерфероном. Первые поиски привели в мир полезных вирусов. Ведь среди вирусов-сапрофитов есть и такие которые мирно сосуществуют с человеком, постоянно находятся внутри его организма, в его органах и тканях, не вызывая никаких болезней.
Московские ученые, руководимые членом-корреспондентом АМН СССР М. Ворошиловой, вспомнили о таи называемых эитеровирусах, которые живут в кишечнике ребенка с самого рождения, а потом исчезают. Ученые подумали, что энтеровирусы должны играть какую-то определенную защитную роль в первые годы жизни, пока ребенок еще не успел подготовиться к встрече с различными вирусами и его иммунитет слаб. А что, если энтеровирусы стимулируют в организме новорожденных образование интерферона? - подумали исследователи Для проверки этого предположения они создали вакцину из безвредных энтеровирусов-сапрофитов.
Когда вакцину вводили в рот, энтеровирусы расселялись в кишечнике человека и размножались там в течение нескольких недель. Все это время они заставляли организм вырабатывать интерферон. Теперь уже было не страшно, что интерферон быстро разрушается. В кровь поступали все новые и новые его порции. А пока он вырабатывался в организме, человек оставался защищенным от самых разнообразных вирусных болезней.
Во время нескольких эпидемий гриппа энтеровирусную вакцину успешно применяли во многих городах страны. Ученые подсчитали, что несколько тысяч людей, получивших вакцину - стимулятор интерферона, гриппом не заболели. Те же, кто все-таки заразился, болели легко и быстро поправлялись.
Чтобы стимулировать выработку интерферона в организме людей, успешно используют и другие живые вирусные вакцины: против гриппа или кори, полиомиелита или свинки. Эти вакцины безвредны для организма человека, и в то же время размножение входящих в их состав вирусов сопровождается образованием весьма высоких концентраций интерферона. После введения такой вакцины человек становится на несколько дней и даже недель невосприимчивым к гриппу и другим респираторным заболеваниям.
Работы, проведенные в Ленинграде во время эпидемий гриппа, показали, что стимуляторы (их еще называют индукторы) интерферона почти в три раза уменьшают число заболеваний детей гриппом и другими простудными болезнями.
Кроме того, ученые создали несколько синтетических препаратов, которые сейчас изучаются в экспериментальных условиях. Получены также полисахаридные препараты из некоторых микробов и грибков, в том числе из обычных дрожжей, с помощью которых мы выпекаем хлеб.
Эти препараты тоже способны стимулировать образование защитного белка - интерферона. Под действием таких индукторов организм животных, надежно защищаясь от заражения различными вирусами, продуцирует в тысячи раз больше интерферона, чем удается вводить извне в виде готового препарата.
Ученые добились пока, чтобы выработка интерферона в организме продолжалась в течение нескольких дней. К сожалению, потом необходима новая стимуляция.
Изучение различных свойств индукторов интерферона показало, что эти препараты не оказывают вредного воздействия на организм и их можно вводить длительное время, не опасаясь нежелательных реакций. Защита создается, как правило, в первые же часы. Она обладает весьма широким спектром активности, направленной на подавляющую массу известных сейчас вирусов.
Этот метод использования индукторов интерферона может стать особенно перспективным при возникновении эпидемий и пандемий, вызываемых новыми вариантами вируса гриппа, плохо поддающимися воздействию вакцинации. Имеющиеся пока еще ограниченные наблюдения показывают, что, как и вакцинация, профилактика интерфероном сокращает заболеваемость в два-три раза. Кроме того, использование интерферона и стимуляторов его образования надежнее всего может защитить человека при встрече с любым новым вирусом.
3. Жизненный цикл вируса
4. Строение вирусных частичек
а). Молекула ДНК или РНК;
б). оболочка, окружающая нуклеиновую кислоту.
Виды вирусов.
В зависимости от структуры и химического состава оболочки вирусы делятся на две группы:
Особенность вирусов.
Вирусы не имеют собственного обмена веществ, у них отсутствуют клеточные органоиды и структуры, вне организма или клетки они не проявляют признаков жизни, в их составе нет воды. Некоторые вирусы (например, гриппа) содержат ферменты.
7. Механизм проникновения вируса в клетку-хозяина
На поверхности клетки-хозяина имеются особые рецепторные участки, которые «узнают» соответствующие белки оболочки вируса. Этим обеспечивается высокая специфичность вирусов: часто вирусы поражают только определенный тип клеток определенного вида организмов. Если вирус прикрепляется к другим участкам поверхности клетки, заражение может и не произойти.
Пути проникновения вируса в клетку-хозяина
I | II | Ill |
Вирусные оболочки сливаются с клеточной мембраной (у вируса гриппа). | Вирусная частичка проникает в клетку путем пиноцитоза, т.е. процесса поглощения клеткой жидкости, вместе с растворенными в ней веществами. | Проникновение вируса в бактериальную клетку (на примере бактериофага Т 4). Вирус состоит из головы, здесь сосредоточена ДНК, отростка, внутри которого проходит канал и нескольких хвостовых нитей, с их помощью вирус соединяется с рецепторными участками клетки-хозяина. Сначала вирус прикрепляется к поверхности бактерии и растворяет в этом месте ее оболочку. Затем ДНК бактериофага впрыскивается в клетку бактерии, а его оболочка остается вне клетки-хозяина. (стр. 191. рис 31.3) |
Размножение вирусов
Проникнув в клетку-хозяина, молекулы нуклеиновой кислоты удваиваются, образуя новые вирусные частицы, которые «одеваются» в оболочку из синтезированного клеткой вирусного белка, при этом вирусная нуклеиновая кислота блокирует синтез клеточных белков, а в белоксинтезирующий аппарат передается информация о синтезе вирусных белков. Освобождаются вирусы из клетки-хозяина или разрушая ее, или «отпочковываясь», тогда клетка-хозяин может продолжительное время сохранять свою жизнедеятельность.
10. Гипотезы происхождения вирусов
1. Вирусы - потомки бактерий , возникшие в результате их регрессивной, т.е. упрощенной эволюции.
2. Вирусы - клеточные «заблудившиеся» органеллы (рибосомы или фрагменты хромосом).
Подобно хромосомам растений и животных, вирусы могут размножаться только находясь в сложной среде, создаваемой живой клеткой. Многочисленные попытки выращивать вирусы в лишенных клеток культурных средах, содержащих всевозможные витамины и аминокислоты, до сих пор остаются безуспешными.
3. Вирусы сохранились с архидревних времен как одна из первобытных форм материи.
Больше всего сторонников второй гипотезы: вирусы произошли от генетических элементов, которые стали автономными.
1 | |
Вспомните!
Чем вирусы отличаются от всех остальных живых существ?
Почему существование вирусов не противоречит основным положениям клеточной теории?
Состоят из органических веществ, что и клетки (белки, нуклеиновые кислоты)
Размножаются с помощью клеток
Какие вы знаете вирусные заболевания?
Грипп, ВИЧ, бешенство, краснуха, оспа, герпес, гепатит, корь, папиллома, полиомиелит.
Вопросы для повторения и задания
1. Как устроены вирусы?
Вирусы имеют очень простое строение. Каждый вирус состоит из нуклеиновой кислоты (или ДНК, или РНК) и белка. Нуклеиновая кислота является генетическим материалом вируса. Она окружена защитной белковой оболочкой - капсидом. Внутри капсида могут также находиться собственные вирусные ферменты. Некоторые вирусы, например вирус гриппа и ВИЧ, имеют дополнительную оболочку, которая образуется из клеточной мембраны клетки-хозяина. Капсид вируса, состоящий из многих белковых молекул, обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Эта особенность строения позволяет отдельным белкам вируса объединяться в полную вирусную частицу путём самосборки.
2. Каков принцип взаимодействия вируса и клетки?
3. Опишите процесс проникновения вируса в клетку.
«Голые» вирусы проникают в клетку путём эндоцитоза - погружения участка клеточной мембраны в месте их адсорбции. Иначе этот процесс известен как виропексис [вирус + греч. pexis, прикрепление]. «Одетые» вирусы проникают в клетку путём слияния суперкапсида с клеточной мембраной при участии специфических F-белков (белков слияния). Кислые значения рН способствуют слиянию вирусной оболочки и клеточной мембраны. При проникновении «голых» вирусов в клетку образуются вакуоли (эндосомы). После проникновения «одетых» вирусов в цитоплазму происходит частичная депротеинизация вирионов и модификация их нуклеопротеида (раздевание). Модифицированные частицы теряют инфекционные свойства, в ряде случаев изменяются чувствительность к РНКазе, нейтрализующему действию антител (AT) и другие признаки, специфичные для отдельных групп вирусов.
4. В чём проявляется действие вирусов на клетку?
Подумайте! Вспомните!
1. Объясните, почему вирус может проявить свойства живого организма, только внедрившись в живую клетку.
Вирус-неклеточная форма жизни, у него нет никаких органоидов, выполняющих в клетках определенные функции, нет обмена веществ, вирусы не питаются, не размножаются самостоятельно, не синтезируют никаких веществ. У них есть только наследственность в форме какой-то одной нуклеиновой кислоты-ДНК или РНК, а также капсид из белков. Поэтому только в клетке хозяина, когда вирус встраивает свою ДНК (если это ретро-вирус, то сначала происходит обратная транскрипция и строится по РНК-ДНК) в ДНК клетки, могут образовываться новые вирусы. При репликации и дальнейшем синтезе клеткой нуклеиновых кислот и белков заодно воспроизводится и вся информация вируса, занесенная им, и собираются новые вирусные частицы.
2. Почему вирусные заболевания имеют характер эпидемий? Охарактеризуйте меры борьбы с вирусными инфекциями.
Распространяются быстро, воздушно-капельным путем.
3. Выскажите своё мнение о времени появления на Земле вирусов в историческом прошлом, учитывая, что вирусы могут размножаться только в живых клетках.
4. Объясните, почему в середине XX в. вирусы стали одним из главных объектов экспериментальных генетических исследований.
Вирусы быстро размножаются, ими легко заразиться, вызывают эпидемии и пандемии, могут служить мутагенами для человека, животных и растений.
5. Какие сложности возникают при попытках создать вакцину против ВИЧ-инфекции?
Так как ВИЧ уничтожает иммунную систему человека, а вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных генно-инженерным или химическим путём. Иммунная ситема не выдержит этого действия.
6. Объясните, почему перенос вирусами генетического материала от одного организма к другому называют горизонтальным переносом. Как тогда, по вашему мнению, называют передачу генов от родителей детям?
Горизонтальный перенос генов (ГПГ) - процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Вертикальный перенос генов – это перенос генетической информации от клетки или организма к их потомству при помощь обычных генетических механизмов.
7. В разные годы как минимум семь Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию о современных достижениях в области исследования вирусов.
Борьба человечества с эпидемией СПИДа продолжается. И хотя рано подводить итоги, определенные, без сомнения, оптимистические тенденции, все-такипрослеживаются. Так, биологам из Америки, удалось вырастить иммунные клетки, в которых вирус иммунодефицита человека размножаться не может. Этого удалось добиться с помощью новейшей методики, позволяющей влиять на работу наследственного аппарата клетки. Профессор Колорадского университета Рамеш Аккина и его коллеги спроектировали особые молекулы, которые блокируют работу одного из ключевых генов вируса иммунодефицита. Затем ученые изготовили искусственный ген, способный осуществлять синтез таких молекул, и с помощью вируса-носителяввели его в ядра стволовых клеток, которые в последствии и дают начало иммунным клеткам уже защищенным от ВИЧ-инфекции. Однако насколько эта методика окажется эффективной в борьбе со СПИДом, покажут только клинические испытания.
Еще 20 лет назад заболевание считалось неизлечимым. В 90-тые годы применялись только препараты короткоживущего интерферона-альфа. Эффективность такого лечения была очень низка. На протяжении последнего десятилетия «золотым стандартом» в терапии хронического гепатита С являлась комбинированная противовирусная терапия пегилированным интерфероном-альфа и рибавирином, эффективность которой в отношении элиминации вируса, то есть излечения гепатита С, достигает в целом 60-70%. При этом, среди больных, инфицированных 2 и 3 генотипами вируса, она составляет около 90%. В то же время, частота излечения у больных, инфицированных генотипом вируса С, до последнего времени составляла всего 40-50%.
1. Особенности жизнедеятельности (размеры)
2. Схема строения вируса
3. Схема проникновения в клетку, размножения
4. Стихи и загадки о вирусах
4.Загадки и стихи
У меня печальный вид, –
Голова с утра болит,
Я чихаю, я охрип.
Что такое?
Это – ... грипп
Подлый вирус этот грипп
Глова сейчас болит
Поднялась температура
И нужнате перь микстура
Заболела детка корью?
Это вовсе и не горе
Врач поможет, поспешит
Нашу детку излечит
На прививку я иду
Гордо к доктору приду
Шприц давайте и укол
Все готово? Я пошел
Ваша будущая профессия
1. Докажите, что базовые знания о процессах, происходящих на молекулярном и клеточном уровнях организации живого, необходимы не только биологам, но и специалистам в других областях естественных наук.
Биофизики, биохимики, не смогут обойтись без таких знаний. Физический и химический процессы протекают по одинаковым законам.
2. Какие профессии в современном обществе требуют знания строения и особенностей жизнедеятельности прокариотических организмов? Подготовьте небольшое (не более 7-10 предложений) сообщение о той профессии, которая вас наиболее впечатлила. Объясните свой выбор.
Системный биотехнолог. Специалист по замещению устаревших решений в разных отраслях новыми продуктами отрасли биотехнологий. Например, он будет помогать транспортным компаниям перейти на биотопливо вместо дизельного, а строительным – на новые биоматериалы вместо цемента и бетона. Использовать биотехнологии для очистки жидких сред.
3. «Эти специалисты нужны в ветеринарных и медицинских научных институтах, академических институтах, на предприятиях, связанных с биотехнологиями. Они не останутся без работы в лабораториях поликлиник и больниц, на агрономических селекционных станциях, в ветеринарных лабораториях и больницах. Порой именно они могут поставить наиболее достоверный и точный диагноз. Их исследования незаменимы для ранней диагностики онкологических заболеваний». Предположите, о людях какой специальности идёт речь в этих предложениях. Докажите свою точку зрения.
Наверное генетики. Занимаясь генетическим материалом могут работать в любых отраслях связанных с живыми организмами, будь то селекция или любая отрасль медицинских знаний.
творческая работа
Способ размножения вирусов
Вирус (от лат. virus- яд) - микроскопическая частица, способная инфицировать клетки живых организмов.
Вирусология (от virus и logos - слово, учение), наука о вирусах. Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику.
Способ размножения вирусов также отличается от деления, почкования, спорообразования или полового процесса, которые имеют место у одноклеточных организмов, у клеток многоклеточных организмов и у последних в целом. Репродукция, или репликация, как обычно обозначают размножение вирусов. Формирование вирионов происходит либо путем само сборки (упаковка вирусной нуклеиновой кислоты в белковые капсиды и образование нуклеокапсида), либо с участием клетки, либо обоими способами (оболочечные вирусы). Конечно, противопоставление митотического деления клетки и репликации не абсолютно, так как способы репликации генетического материала у ДНК-содержащих вирусов принципиально не отличаются, а если учесть, что и синтез генетического материала у РНК-содержащих вирусов также осуществляются по матричному типу, то относительным является противопоставление митоза и репликации всех вирусов. И, тем не менее, различия в способах размножения клеток и вирусов настолько существенны, что имеет делить весь живой мир на вирусы и невирусы.
Вирусные заболевания живых организмов
Самые крупные вирусы (вирусы оспы) приближаются по размерам к небольшим бактериям, самые мелкие (возбудители энцефалита, полиомиелита, ящура) - к крупным белковым молекулам. Иными словами, среди вирусов есть свои великаны и карлики. (см...
Вирусы и их особенности
Первые упоминания о самой грозной вирусной инфекции прошлого -- оспе найдены в древнеегипетских папирусах. Эпидемия оспы в Египте за 12 веков до нашей эры описана древними арабскими учеными. На коже мумии фараона Рамзеса V (1085 г. до н.э...
В XVI-XV1I вв. натурфилософское и во многом схоластическое познание природы превратилось в современное естествознание, в систематическое научное познание на базе экспериментов и математического изложения...
Естественнонаучная и гуманитарная культуры
Естествознание XVIII развивалось на базе классической механики Галилея-Ньютона, определившей механистический взгляд на природу. Среди основных наиболее значимых достижений естествознания XVIII в...
Значение плодов и ягод как продуктов питания
Нынешний год для садоводов Алтайского края был крайне тяжелым. Плодовые культуры - яблоня, груша, слива, вишня - не выдержали суровых рождественских морозов. Многие сорта вымерзли вообще, или в лучшем случае от дерева остался пень...
Кодирование и реализация биологической информации в клетке, генетический код и его свойства
Коммуникации у птиц
У птиц коммуникация исследована лучше, чем у каких-либо других животных. Птицы общаются с особями своего вида, а также других видов, в том числе с млекопитающими и даже с человеком. Для этого они используют звуковые (не только голосовые)...
Коммуникации у птиц
Дело в том, что наряду с песней, акустический репертуар всех видов певчих птиц, в том числе и всех, о которых мы с вами говорили, включает так называемые, "позывы" или "позывки", это совершенно иной класс звуков. Отличаются они от песни, пожалуй...
Вирусы являются возбудителями многих опасных заболеваний человека, животных и растений. В то же время, вирусы - возбудители заболеваний у нежелательных для человека организмов («враги наших врагов»)...
Медицинское и ветеринарное значение вирусов
Вирусы культивируют на биологических моделях: в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Лабораторных животных (взрослых и новорожденных белых мышей, хомяков, кроликов, обезьян и др...
Механизмы движения хромосом при делении клетки
На основе выясненного механизма деления клетки можно предложить более щадящий способ нарушения митоза, посредством разрушения соединения хромосомы и микротрубочки. Поскольку микротрубочки и кинетохоры соединяются посредством фибрилл...
Мутация - изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводить к стойким изменением наследственных свойств вирусов...
Мутация вирусов, характеристика мутагенов
Плесневые грибы
Размножение происходит путем деления, идущего в поперечном направлении. При делении бактерия распадается на две равные или неравные по величине части. Образовавшиеся две клетки рассматриваются как материнская и дочерняя...
Польза меда
Добывание мёда - старинный славянский промысел. Он назывался бортничеством, а люди, занимавшиеся им - бортниками. Бортники берегли старые толстые деревья, в которых были дупла, и сами выдалбливали отверстия - борти...
Многие вирусы являются возбудителями заболеваний, таких как СПИД, коревая краснуха, эпидемический паротит (свинка), ветряная и натуральная оспа.
Вирусы имеют микроскопические размеры, многие из них способны проходить через любые фильтры. В отличие от бактерий, вирусы нельзя выращивать на питательных средах, так как вне организма они не проявляют свойств живого. Вне живого организма (хозяина) вирусы представляют собой кристаллы веществ, не имеющих никаких свойств живых систем.
Строение вирусов
Зрелые вирусные частицы называются вирионами. Фактически они представляют собой геном, покрытый сверху белковой оболочкой. Эта оболочка – капсид. Она построена из белковых молекул, защищающих генетический материал вируса от воздействия нуклеаз – ферментов, разрушающих нуклеиновые кислоты.
У некоторых вирусов поверх капсида располагается суперкапсидная оболочка, также построенная из белка. Генетический материал представлен нуклеиновой кислотой. У одних вирусов это ДНК (так называемые ДНК-овые вирусы), у других – РНК (РНК-овые вирусы).
Размножение вирусов
Ретровирус, обеспечивающие обратную транскрипцию: на матрице РНК строится одноцепочечная молекула ДНК. Из свободных нуклеотидов достраивается комплементарная цепь, которая и встраивается в геном клетки-хозяина. С полученной ДНК информация переписывается на молекулу и-РНК, на матрице которой затем синтезируются белки ретровируса.