Моделирование работы сети в net-simulator. установка net-simulator
Цель работы:
- 1. Ознакомление с приемами моделирования сетей с помощью ПО Cisco Packet Tracer.
- 2. Получение навыков по построению и моделированию сетей с использованием концентраторов, коммутаторов, маршрутизаторов.
- 3. Получение навыков использования команд ping, tracert, arp для контроля за состоянием вычислительной сети.
Теоретическая часть.
Описание Cisco Packet Tracer.
Cisco Packet Tracer - программный продукт, разработанный в рамках сетевых академий компанией Cisco и позволяющий проектировать сети, изучать сетевое оборудование, связи между ними и конфигурировать их.
Рисунок 1 - Основные компоненты программы Cisco Packet Tracer
- 1- Рабочая область, где размещается оборудование для организации сети;
- 2- Доступное оборудование (концентраторы, коммутаторы, маршрутизаторы, оконечные устройства);
- 3- Кнопки управления объектами;
- 4- Выбор между физической и логической рабочей областью. Особенностью Packet Tracer является то, что при переходе в физическую рабочую область можно рассмотреть созданную сеть на уровне от виртуального города до стойки. Переход на более низкий уровень - по щелчку мыши по объекту. Возврат - кнопка Back;
- 5- Окно наблюдения и управления за передаваемыми пакетами;
- 6- Переключение между режимами работы - режим реального времени и симуляции. В режиме симуляции все пакеты, пересылаемые внутри сети, отображаются графически (Рисунок 2). Эта возможность позволяет наглядно продемонстрировать, по какому интерфейсу в данный момент перемещается пакет, какой протокол используется и т.д. В данном режиме можно не только отслеживать используемые протоколы, но и видеть, на каком из семи уровней модели OSI данный протокол задействован, щелкнув мышью на квадрат в поле Info (Рисунок 3).
Рисунок 2 - Передача пакетов в режиме симуляции
Рисунок 3 - Уровни модели OSI в Cisco Packet Tracer
Запустить работу в режиме симуляции можно сформировав ping - запрос с помощью или и нажав на кнопку Play.
Каждое устройство может быть сконфигурировано в зависимости от своего назначения. Например, щелкнув на значок компьютера попадаем в область физических настроек, где приведен внешний вид оборудования и перечислены платы, которые можно добавить к устройству. Во вкладке Config (рисунок 4) приведены сетевые настройки устройства (IP, маска, шлюз, DNS - сервер).
Рисунок 4 - Сетевые настройки компьютера
Во вкладке Desktop приведены дополнительные возможности:
- · IP Configuration - сетевые настройки
- · Command Prompt - командная строка
- · Терминал
- · Браузер
- · Электронная почта и другое.
Командная строка используется для проверки работоспособности сети, задания настроек и просмотра результатов. Основные команды при использовании:
· Ping - посылка эхо-запроса
Формат: Ping адрес_узла_назначения.
Может быть с расширениями: Ping -t адрес_узла_назначения - посылка эхо-запроса до тех пор пока не будет прервано командой Ctrl+C;
Ping -n count адрес_узла_назначения - посылка стольких эхо-запросов, сколько указано в count.
· Arp - а - просмотр arp-таблицы;
Arp - d -очистить arp-таблицу.
· Tracert - определение маршрута до узла назначения.
Формат: Tracert адрес_узла_назначения.
Протокол STP.
Spanning Tree Protocol -- сетевой протокол, работающий на втором уровне модели OSI. Основной задачей STP является приведение сети Ethernet с множественными связями к древовидной топологии, исключающей циклы пакетов. Происходит это путём автоматического блокирования избыточных в данный момент связей для полной связности портов. Протокол описан в стандарте IEEE 802.1D.
Протокол CDP.
Cisco Discovery Protocol -- протокол второго уровня, разработанный компанией Сisco Systems, позволяющий обнаруживать подключённое (напрямую или через устройства первого уровня) сетевое оборудование Сisco, его название, версию IOS и IP-адреса. Поддерживается многими устройствами компании, почти не поддерживается сторонними производителями.
Получаемая информация включает в себя типы подключённых устройств, интерфейсы маршрутизатора, к которым подключены соседние устройства, интерфейсы, использующиеся для создания соединений, а также модели устройств.
Протокол ICMP.
Internet Control Message Protocol - протокол управляющих сообщений.
Используя ICMP, узлы и маршрутизаторы, связывающиеся по протоколу IP, могут сообщать об ошибках и обмениваться ограниченной управляющей информацией и сведениями о состоянии.
Каждое сообщение протокола ICMP передается по сети внутри пакета IP (Рисунок 5). Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.
Рисунок 5 - Формат пакета ICPM
Статическая и динамическая маршрутизация.
Маршрутизация -- процесс определения маршрута следования информации в сетях связи. Маршруты могут задаваться административно (статические маршруты), либо вычисляться с помощью алгоритмов маршрутизации, базируясь на информации о топологии и состоянии сети, полученной с помощью протоколов маршрутизации (динамические маршруты). После определения маршрута следования пакета необходимо отослать информацию об этом каждому транзитному устройству. Каждое сообщение обрабатывается и заносится в таблицу маршрутизации, в которой указывается интерфейс, по которому устройство должно передавать данные, относящиеся к конкретному потоку.
Протокол RIP.
Routing Information Protocol - протокол маршрутной информации. Используется для изменения записей в таблице маршрутизации в автоматическом режиме. Для измерения расстояния до пункта назначения чаще всего используется количество хопов - количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до пункта назначения (хотя могут быть и другие варианты - надежность сетей, задержки, пропускная способность). Роутеры отсылают свою таблицу маршрутизации соседям, получают от них подобные сообщения и обрабатывают их. Если новая информация имеет лучшее значение метрики, то старая запись замещается новой, и маршрутизатор снова отсылает пакет RIP своим соседям, ждет ответа и обрабатывает информацию.
Протокол ARP.
Любое устройство, подключенное к локальной сети, имеет уникальный физический сетевой адрес, заданный аппаратным образом. 6-байтовый Ethernet-адрес выбирает изготовитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Если у машины меняется сетевой адаптер, то меняется и ее Ethernet-адрес.
4-байтовый IP-адрес задает менеджер сети с учетом положения машины в сети Интернет. Если машина перемещается в другую часть сети Интернет, то ее IP-адрес должен быть изменен. Преобразование IP-адресов в сетевые выполняется с помощью arp-таблицы. Каждая машина сети имеет отдельную ARP-таблицу для каждого своего сетевого адаптера.
Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети. В двух столбцах содержатся IP- и Ethernet-адреса. Если требуется преобразовать IP-адрес в Ethernet-адрес, то ищется запись с соответствующим IP-адресом.
ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой.
Существуют следующие типы сообщений ARP: запрос ARP (ARP request) и ответ ARP (ARP reply). Система-отправитель при помощи запроса ARP запрашивает физический адрес системы-получателя. Ответ (физический адрес узла-получателя) приходит в виде ответа ARP.
Перед тем как передать пакет сетевого уровня через сегмент Ethernet, сетевой стек проверяет кэш ARP, чтобы выяснить, не зарегистрирована ли в нём уже нужная информация об узле-получателе. Если такой записи в кэше ARP нет, то выполняется широковещательный запрос ARP. После этого отправитель обновит свой кэш ARP и будет способен передать информацию получателю.
Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно.
Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным.
В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес.
Размер: px
Начинать показ со страницы:
Транскрипт
1 МОДЕЛИРОВАНИЕ РАБОТЫ СЕТИ В NET-SIMULATOR Установка NET-Simulator Составитель: Коробецкая А.А. NET-Simulator это бесплатно распространяемая программа, позволяющая имитировать работу компьютерных сетей. Скачать программу можно с официального сайта: На том же сайте находится инструкция по установке, справка и описание примера сети. Для работы программы необходимо установить Java-машину: Для запуска NET-Simulator просто разархивируйте архив и запустите файл run.bat. Внимание! Путь к папке с NET-Simulator не должен содержать русских символов! Если все выполнено правильно, сначала запустится командная строка, а затем откроется окно с примером сети. На практике используются более сложные симуляторы сетей, в которых доступно множество реальных устройств. Примеры симуляторов: ns-3 (бесплатная); NetSim (проприетарная); HP Network Simulator (бесплатная); Cisco CCNA Labs Simulation (проприетарная). 1
2 Задание 1. (2 балла) Ознакомиться с документацией и примером сети. Ответить на вопросы. Какие сетевые устройства можно использовать в Net- Simulator? Как добавить и удалить устройства в проект? Как подсоединить кабель к устройству? Как запустить терминал для настройки устройств? Какие команды поддерживает терминал NET-Simulator? 2. (4 балла) Реализовать примеры сетей из методички. сеть «точка-точка»; сеть с топологией «шина» на общем концентраторе; сеть с топологией «пассивная звезда» с использованием коммутатора; соединение сетей вручную через коммутатор; соединение различных сетей через роутер. 3. (6 баллов) Реализовать собственную сеть в соответствии с вариантом и сгенерировать отчет. Описать подсети, из которых состоит сеть, по схеме: адрес сети; маска сети; топология сети; число хостов в сети; максимально допустимое число хостов; какие устройства входят в сеть; адрес шлюза по умолчанию (если он есть); адрес широковещательной рассылки. Всего за работу: 12 баллов. По работе оформляется отчет в Word, который должен содержать ответы по каждому пункту задания. Указания к выполнению работы В данных указаниях не дублируется информация с сайта NET- Simulator. Самостоятельно ознакомьтесь и при необходимости обращайтесь к документации программы! Каждый пример сохраняется в отдельном проекте. Сеть «точка-точка» (point-to-point) «Точка-точка» простейшая сеть, состоящая из 2-х рабочих станций, соединенных кабелем. Создайте новый проект. Разместите на листе 2 компьютера и соедините их кабелем. При правильном подключении на компьютерах загорятся 2 зеленые лампочки. 2
3 Дважды кликните по компьютеру Desktop 0. Откроется окно терминала. Введите help чтобы увидеть список доступных команд. Команда ifconfig позволят посмотреть и настроить параметры сетевых интерфейсов (сетевых карт, разъемов роутера и т.п.). 3
4 Пока мы не настраивали свою сеть, сетевые карты компьютеров отключены и не имеют своего адреса. Чтобы это увидеть, введите команду ifconfig с параметром -a: eth0 это имя интерфейса (в реальности может быть произвольным); 4
5 Link encap: Ethernet используемый стандарт подключения; HWaddr физический адрес (MAC-адрес), неизменяемый; DOWN состояние (выкл.); далее идет статистика передачи данных. Назначим первому компьютеру IP-адрес с маской (адреса x.x/24 стандартно используются для небольших локальных сетей): В описание интерфейса добавилась строчка с настройками IP-адреса и статус сменился с DOWN на UP. Аналогично настроим второй компьютер на адрес /24 (адрес должен быть из той же сети, например, не подойдет, а подойдет). Теперь проверим работоспособность сети с помощью команды ping (Ctrl+C остановить передачу, всего необходимо отправить 7-10 пробных 5
6 пакетов). Обратите внимание, пока ведется передача/получение данных, у узлов мигают зеленые лампочки, а кабель подсвечивается синим. В ходе передачи ни один пакет не был потерян. Мы получили работоспособную сеть «точка-точка». Сохраните результат в виде отдельного проекта. Контрольные вопросы: Что такое маска сети? Какой адрес у созданной в примере сети (net id)? Каковы адреса узлов (host id) в сети? Сеть на основе концентратора. Топология «шина» (пассивная звезда) Мы продолжим совершенствовать ранее созданную сеть «точка-точка», но сохранить ее нужно в отдельном проекте. 6
7 Предположим, мы хотим создать сеть из трех компьютеров. Напрямую соединить их уже не получится, т.к. у каждого компьютера только один интерфейс (сетевая карта). Даже если в реальной сети у компьютера две сетевых карты, настроить общую сеть без сетевых устройств довольно затруднительно один из компьютеров придется сделать сервером. В примере мы реализуем простейшую сеть на основе концентратора. Ее можно рассматривать и как «шину», и как пассивную звезду. Реальную шину с одним общим кабелем в Net-Simulator создать нельзя, т.к. на кабель подключается ровно 2 устройства. Итак, добавьте к ранее созданной сети «точка-точка» еще один компьютер, концентратор (hub) и соедините кабелем, как показано на рисунке (расположение узлов на листе может быть любым): Адрес сети мы оставим прежним, поэтому первые два узла перенастраивать не нужно. Они по-прежнему будут работоспособны. Совет Для повтора предыдущей команды терминала нажмите на клавиатуре стрелку «вверх». Необходимо настроить только третий узел, выдав ему адрес из той же сети, например: 7
8 Сам концентратор не является активным устройством и не настраивается. Проверим доступность нового компьютера: 8
9 Первый пакет с нового компьютера был потерян (возможно, неполадки в сети), затем передача шла без сбоев. Обратите внимание, при передаче данных мигают лампочки у всех компьютеров, т.е. данные получают все устройства в сети. Поэтому такая сеть будет весьма загруженной. Сохраните полученную сеть в отдельный проект. Аналогично можно добавить четвертый, пятый и т.д. узел. Если число узлов больше числа разъемов концентратора, то можно использовать несколько концентраторов, или даже выделить свой концентратор каждому компьютеру, чтобы сделать сеть похожей на «шину». Настройка сети будет во всех случаях одинаковой. И в любом случае, сеть можно считать реализованной по топологии «шина». Примеры (реализовывать не нужно). 9
10 Контрольные вопросы 1. Какой сетевой адрес у концентратора? 2. Сколько узлов может быть в сети с топологией «шина» (в реальной и в модельной)? Сети с использованием коммутатора. Пассивная звезда Чтобы снизить загрузку сети, вместо концентратора можно использовать коммутатор (switch). Это устройство может анализировать физический адрес и передает пакеты не всем узлам, а только конкретному получателю. Такая сеть имеет топологию «пассивная звезда»: находящийся в центре коммутатор не управляет сетью, но передача идет не на все компьютеры, как в «шине», а только на нужные. Для этого у коммутатора есть таблица физических адресов (mactab), в которой записано, к какому интерфейсу какой узел подключен. 10
11 Эта таблица заполняется автоматически. При попытке передачи коммутатор сначала опрашивает все подключенные устройства и узнает их адреса. Адреса заносятся в таблицу, и далее коммутатор ведет передачу только по нужному адресу через нужный интерфейс. Поскольку устройства могут подключаться и отключаться, MACтаблица периодически очищается и коммутатор опрашивает устройства снова. Это позволяет поддерживать таблицу в актуальном состоянии. Для реализации такой сети просто замените концентратор в предыдущем проекте на коммутатор. Перенастраивать компьютеры не нужно. Теперь, если проверить работоспособность сети, сначала произойдет отправка на все хосты, а потом коммутатор будет отправлять данные только на нужный (со на): 11
12 Не останавливая пинг, проверьте таблицу MAC-адресов коммутатора: Одновременно запустите передачу с узла на и еще раз проверьте MAC-таблицу: 12
13 После остановки передачи, через несколько секунд таблица очистится. Сохраните полученную сеть в отдельный проект. Две сети на общем коммутаторе Мы можем подключить две различных сети к одному коммутатору, как если бы это были отдельные сети. 13
14 Добавьте в предыдущий проект еще два компьютера и назначьте им адреса /28 и /28. Подсоедините новые компьютеры к свободным разъемам коммутатора. Таким образом, у нас получилось две подсети: 1) с маской, компьютеры Desktop 0, Desktop 1, Desktop 2 14
15 2) с маской, компьютеры Desktop 4, Desktop 5 Если мы проверим работу сети, то увидим, что внутри каждой из подсетей пакеты циркулируют свободно, но не могут попасть из одной подсети в другую, хоть эти сети и подключены к одному и тому же устройству. Причина в том, что у компьютеров не настроены таблицы маршрутизации, т.е. компьютеры не знают, каким образом передать данные в другую сеть. Они просто не начнут передачу на неизвестный адрес. Когда мы назначали ip-адреса компьютерам, в их таблицы маршрутизации автоматически добавлялась одна единственная строчка: с собственной сетью компьютера. Просмотреть и настроить таблицу маршрутизации можно командой route. У компьютеров первой подсети она выглядит так: А во второй подсети так: 15
16 Destination адрес назначения, для которого адреса задается маршрут в данной строке Gateway на какой шлюз отправлять пакеты, * ни на какой, передача внутри локальной подсети Flags флаги (проставляются автоматически): U маршрут активен, G маршрут использует шлюз, H адрес назначения является адресом отдельного хоста, а не сети Metric метрика, определяет приоритет маршрутов Iface интерфейс, через который ведется передача Т.е. компьютеры первой подсети «знают» только свои локальные адреса из диапазона, а второй подсети только из Чтобы связать сети между собой, необходимо добавить их в таблицы маршрутизации каждого компьютера. Для компьютеров первой подсети (Desktop 0, Desktop 1, Desktop 2): Для второй подсети (Desktop 4, Desktop 5): 16
17 Совет Если вы ошиблись при добавлении маршрута, вам нужно сначала удалить из таблицы неправильный маршрут, а потом добавить правильный: 1. Стрелкой «вверх» пролистайте команды до той, в которой вы ошиблись. 2. Замените add на del и выполните команду. 3. Еще раз пролистайте команды и исправьте ошибку. Теперь (только после настройки обеих подсетей!) они могут передавать пакеты друг другу. Таким образом, мы получили две подсети, подключенных к общему маршрутизатору. Сохраните полученную сеть в отдельный проект. Контрольные вопросы: 1. Откуда взялась маска второй подсети? Сколько максимум компьютеров можно подключить к сети с такой маской? 2. Есть ли таблица маршрутизации у коммутатора? Соединение различных сетей через маршрутизатор Если две маленьких сети, как в предыдущем примере, можно объединить с помощью одного коммутатора, то для больших сетей, которые включают много узлов и подсетей, этот вариант не подходит, потому что: а) таблица физических адресов коммутатора становится очень большой, что требует дополнительной памяти и замедляет его работу; б) для обновления таблицы коммутатор запрашивает физические адреса всех устройств сети, а это дополнительный трафик; в) каждому компьютеру придется вписать в таблицу маршрутизации адреса всех подсетей. В реальности для объединения сетей используется маршрутизатор (роутер). Он распределяет трафик между подсетями и определяет путь доставки каждого пакета. Тогда каждому компьютеру не нужно знать адреса всех сетей, нужно только знать адрес своего роутера, который уже решит, куда отправлять пакет. Коммутаторы и концентраторы в таких сетях тоже используются, но они функционируют в пределах подсети. Создаваемый ими трафик не выходит дальше ближайшего роутера. 17
18 Откройте проект, в котором мы создали сеть «пассивная звезда» на коммутаторе, но еще не добавили вторую подсеть. Добавьте в проект маршрутизатор, еще один концентратор, два компьютера и необходимые кабели, как показано на рисунке. Задайте для двух новых компьютеров адреса /16 и /16. Проверьте работоспособность каждой из подсетей. 18
19 Теперь настроим маршрутизатор. В отличие от компьютеров, маршрутизатор имеет 8 портов, каждому из которых соответствует свой интерфейс (eth0-eth7) и свой ip-адрес. Мы подключили первую подсеть (/24) к интерфейсу eth0, а вторую (/16) в интерфейсу eth7. Этим интерфейсам нужно выдать адреса из диапазона соответствующей сети, например и Примечание В реальных сетях традиционно маршрутизатор получает адрес с последним байтом равным 1 (например,), а прочие устройства начиная со 100 (например, и т.д.). Придерживайтесь этого правила при выполнении своего варианта. 19
20 Осталось сообщить компьютерам в сети адрес их маршрутизатора (внести его в таблицу маршрутизации). Нам нужно указать, что пакеты для всех адресов, кроме локальных, должны отправляться на маршрутизатор. «Все адреса» вносятся в таблицу как назначение с маской «шлюз по умолчанию». Настройка Desktop 0 (аналогично настраиваются Desktop 1 и Desktop 2): 20
21 Настройка Desktop 6 (аналогично настраивается Desktop 7): Проверка доступности соседней подсети: 21
22 Для того, чтобы узнать физический адрес, маршрутизатор использует ARP-запросы. Во время передачи можно просмотреть его ARP-таблицу (потом она очищается): Если запустить передачу одновременно на всех узлах сети: Примечание У реальных устройств обычно нет команды, аналогичной arp. Она добавлена в Net-Simulator для наглядности. Полностью настройки сети можно просмотреть через html-отчет (см. пример ниже). Сохраните проект в отдельном файле и сгенерируйте для него отчет. Контрольный вопрос Какие устройства придется настроить, чтобы подсоединить к маршрутизатору еще одну подсеть с адресом /24 и тремя узлами? 22
23 NET-SIMULATOR PROJECT REPORT Project file: Author: Description: Project created at: Report generated at: :56:6 Name: Desktop 0 Description: Desktop Interfaces: Name Status IP Address Netmask Broadcast eth0 UP Routing table: Target Netmask Gateway Metric Interface * 1 eth eth0 Name: Desktop 1 Description: Desktop Interfaces: Name Status IP Address Netmask Broadcast eth0 UP Routing table: Target Netmask Gateway Metric Interface 23
24 * 1 eth eth0 Name: Desktop 2 Description: Desktop Interfaces: Name Status IP Address Netmask Broadcast eth0 UP Routing table: Target Netmask Gateway Metric Interface * 1 eth eth0 Name: 3 Description: Name: 4 Description: Interfaces: Name Status IP Address Netmask Broadcast eth0 UP eth1 DOWN eth2 DOWN eth3 DOWN eth4 DOWN eth5 DOWN eth6 DOWN eth7 UP Routing table: Target Netmask Gateway Metric Interface * 1 eth * 1 eth7 24
25 Name: 5 Description: Name: Desktop 6 Description: Desktop Interfaces: Name Status IP Address Netmask Broadcast eth0 UP Routing table: Target Netmask Gateway Metric Interface * 1 eth eth0 Name: Desktop 7 Description: Desktop Interfaces: Name Status IP Address Netmask Broadcast eth0 UP Routing table: Target Netmask Gateway Metric Interface * 1 eth eth0 25
26 Варианты заданий Вариант 1. Вариант 2. 26
27 Вариант 3. Вариант 4. 27
28 Вариант 5. Вариант 6. 28
29 Вариант 7. Вариант 8. 29
30 Вариант 9. Вариант
31 Вариант 11. Вариант
32 Вариант 13. Вариант
33 Вариант 15. Вариант
Моделирование и анализ локальной вычислительной сети Если двум ПК необходимо взаимодействовать друг с другом, то для этого они должны использовать один и тот же набор правил. Эти правила реализуются программным
ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ» Кафедра автоматической
Топология Задачи Часть 1. Доступ к таблице маршрутизации узла Часть 2. Изучение записей в таблице маршрутизации узла IPv4 Часть 3. Изучение записей в таблице маршрутизации узла IPv6 Исходные данные/сценарий
Лабораторная работа: использование интерфейса командной строки IOS с таблицами МАС-адресов коммутатора Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию R1 G0/1
Лабораторная работа 4 Изучение маршрутизации IP Цель работы: Изучить правила адресации сетевого уровня, научиться распределять адреса между участниками сети передачи данных и организовывать маршрутизацию
Работа с сетевыми интерфейсами 1. Определить имеющиеся на ПК сетевые интерфейсы. Объяснить полученный результат. ip link show 2. Определить адреса имеющихся на ПК сетевых устройств. Объяснить полученный
Топология В данном документе содержится общедоступная информация корпорации Cisco. Страница 1 из 6 Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию ПК 1 ПК 2 ПК 3 ПК 4 ПК
Топология В данном документе содержится общедоступная информация корпорации Cisco. Стр. 1 из 6 Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию R1 R2 R3 R4 G0/0 G0/0 S0/0/1
Протокол прокси-arp Содержание Введение Предварительные условия Требования Используемые компоненты Условные обозначения Как работает ARP-прокси? Схема сети Преимущества прокси ARP Недостатки агента ARP
Протокол прокси-arp Содержание Введение Предварительные условия Требования Используемые компоненты Условные обозначения Как работает протокол прокси-arp? Схема сети Преимущества протокола прокси-arp Недостатки
Лабораторная работа. Создание сети, состоящей из коммутатора и маршрутизатора Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию Задачи R1 G0/0 192.168.0.1 255.255.255.0
ОбОбщие сведения о VIP и их конфигурация; избыточность интерфейса в коммутаторах CSS 11000 Содержание Введение Перед началом работы Условные обозначения Предварительные условия Используемые компоненты
Практика 1. Настройка простой сети Цель: познакомиться с симулятором сетей Cisco Packet Tracer, научиться собирать простую сеть, настраивать сетевое оборудование, создавать VLAN ы и использовать их для
Лабораторная работа. Настройка статических маршрутов и маршрутов IPv4 по умолчанию Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию R1 G0/1 192.168.0.1 255.255.255.0
Общее описание работы Данная лабораторная работа предназначена для приобретения практического опыта в области беспроводных локальных вычислительных сетей (WiFi LAN). Также предлагается ознакомится с возможностями
1 Лабораторная работа 3. Маршрутизация Задача маршрутизации состоит в определении последовательности узлов для передачи пакета от источника до адресата. Каждый маршрутизатор содержит таблицу сетей, подключенных
Топология В данном документе содержится общедоступная информация корпорации Cisco. Стр. 1 из 5 Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию Задачи R1 R2 G0/0 G0/1 S0/0/0
Packet Tracer. Использование команды traceroute для обнаружения сети Топология Сценарий Компания, в которой вы работаете, приобрела новое помещение для филиала. Для создания топологии сети вы запросили
Лабораторная работа. Поиск и устранение неполадок базового EIGRP для IPv4 и IPv6 Топология В настоящем документе содержится общедоступная информация корпорации Cisco. Страница 1 из 12 Таблица адресации
Настройка сетевых параметров в MAC OS Оглавление Схема подключения БЕЗ использования домашнего маршрутизатора... 1 Как проверить подключение... 8 Схема подключения с использованием домашнего маршрутизатора...
Настройка соединения под операционной системой Linux Ubuntu 12.04 Тип доступа VPN В графическом режиме (GUI) В Ubuntu для управления соединениями с интернетом используется программа NetworkManager. Она
Протокол HSRP (Hot Standby Router Protocol): Вопросы и ответы Вопросы Введение Происходит ли переключение на резервный маршрутизатор, если интерфейс локальной сети для активного маршрутизатора имеет состояние
Лабораторная работа. Разработка и внедрение схемы адресации разделенной на подсети IPv4-сети Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию R1 G0/0 G0/1 Lo0 Lo1
Лабораторная работа. Поиск и устранение неполадок статических маршрутов IPv4 и IPv6 Топология В данном документе содержится общедоступная информация корпорации Cisco. Страница 1 из 12 Таблица адресации
Правила Сетевого экрана Правила Сетевого экрана Для контроля сетевых соединений Сетевой экран применяет правила двух видов: Правила для пакетов. Используются для применения общих ограничений сетевой активности
Администрирование локальных сетей Лекция 10. Анализ и устранение неисправностей Содержание лекции Определение проблем протоколов TCP/IP. Как клиентская конфигурация TCP/IP влияет на производительность
Лабораторная работа. Использование интерфейса командной строки (CLI) для сбора сведений о сетевых устройствах Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию Задачи
Лабораторная работа. Поиск и устранение неполадок в работе DHCPv6 Топология Таблица адресации Устройство Интерфейс IPv6-адрес Длина префикса Шлюз по умолчанию R1 G0/1 2001:DB8:ACAD:A::1 64 Недоступно S1
Выбор маршрута в маршрутизаторах Cisco Содержание Введение Предварительные условия Требования Используемые компоненты Условные обозначения Связанные процессы Построение таблицы маршрутизации Резервные
Лабораторная работа: разработка и внедрение схемы адресации разделённой на подсети IPv4-сети Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию Задачи R1 G0/0 Недоступно
Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию G0/0 192.168.10.1 255.255.255.0 Недоступно R1 R2 ПК1 ПК2 ПК3 ПК4 G0/1 192.168.11.1 255.255.255.0 Недоступно S0/0/0
Настройка соединения под операционной системой Linux Ubuntu 12.04 Тип доступа NAT В графическом режиме (GUI) В Ubuntu для управления соединениями с интернетом используется программа NetworkManager. Она
IT Essentials 5.0 6.3.2.7 Лабораторная работа настройка сетевой платы для использования сервера DHCP в ОС Windows 7 Введение Распечатайте и выполните эту лабораторную работу. В этой лабораторной работе
«СЕТЕВЫЕ УТИЛИТЫ WINDOWS» ЗАДАНИЕ Составитель: Коробецкая А.А. В командной строке Windows выполнить: 1. Определить имя локального хоста с помощью утилиты hostname. 2. Определить MAC-адрес всех сетевых
ЛАБОРАТОРНАЯ РАБОТА 1 "Cетевые утилиты ipconfig, arp, ping, tracert, nslookup 1. ЦЕЛЬ РАБОТЫ Ознакомление с сетевыми утилитами ipconfig, arp, ping, tracert, nslookup. 2. ВВОДНЫЕ ПОЛОЖЕНИЯ. Для работы компьютера
Восстановление прошивки роутеров irz RUH/RUH2/RCA Подключите роутер напрямую к компьютеру с помощью кроссового сетевого кабеля (обычно он помечен красным ярлычком «crosswired») и подключите его к COM-порту
Лабораторная работа. Использование программы Wireshark для анализа кадров Ethernet Топология Задачи Часть 1. Изучение полей заголовков в кадре Ethernet II Часть 2. Захват и анализ кадров Ethernet с помощью
Описание проблем соседнего OSPF Содержание Введение Предварительные условия Требования Используемые компоненты Условные обозначения Смежности Состояния соседства Состояние не обнаружено Соседний узел в
Настройка доступа IP видеокамерам и сетевым регистраторам (NVR) из сети Интернет. Версия 1.0 Содержание Доступ IP камеры в Интернет.... 3 1 Подключение IP-камеры в локальную сеть.... 3 1.1 Определение
Лабораторная работа 5.2.3. Настройка RIPv2 с VLSM и распространением маршрута по умолчанию Пароль с шифрованием Пароль Маска Маска Маска привиле- виртуальгирован- подсети / подсети / подсети / Тип ного
Настройка маршрутизатора D- link DIR300NRU для сети Интек- М. Тип доступа NAT (прямой доступ). Первым делом вам необходимо в свойствах Протокола интернета TCP/IP (Windows XP) или Протокола интернета версии
Лабораторная работа. Поиск и устранение неполадок в маршрутизации между сетями VLAN Топология В данном документе содержится общедоступная информация корпорации Cisco. Страница 1 из 9 Таблица адресации
ССС СЕРТИФИКАТ ОС 2 СП 0717 Цифровая система передачи MC04 DSL Модуль сетевого управления Vport (Eth-Ctrl) КВ5.231.021 ТО (ред.2 / август 2010) АДС г. Пермь Содержание: 1. Описание и технические характеристики
Лабораторная работа. Поиск и устранение неполадок в работе расширенной версии EIGRP Топология В настоящем документе содержится общедоступная информация корпорации Cisco. Страница 1 из 9 Таблица адресации
Лабораторная работа: изучение кадров Ethernet с помощью программы Wireshark Топология Задачи Часть 1. Изучение полей заголовков в кадре Ethernet II Часть 2. Захват и анализ кадров Ethernet с помощью программы
Packet Tracer: отправка эхо-запросов и выполнение трассировки для проверки пути Топология В данном документе содержится общедоступная информация корпорации Cisco. Стр. 1 из 6 Таблица адресации Устройство
IT Essentials 5.0 6.3.2.8 Лабораторная работа настройка сетевой платы для использования сервера DHCP в ОС Windows Vista Введение Распечатайте и выполните эту лабораторную работу. В этой лабораторной работе
Настройка сетевых параметров в Windows XP Оглавление Схема подключения БЕЗ использования домашнего маршрутизатора... 1 Как проверить подключение... 5 Схема подключения с использованием домашнего маршрутизатора...
Топология В данном документе содержится общедоступная информация корпорации Cisco. Страница 1 из 5 Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию G0/0.15 G0/0.30 G0/0.45
Это устройство может быть настроено с использованием любого современного web-браузера, например Internet Explorer 6 или Netscape Navigator 7.0 DP-G301 AirPlus TM G 2.4 ГГц беспроводной принт-сервер Прежде
ИНСТРУКЦИЯ ПО УСТАНОВКЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ XPRINTER DRIVER SETUP V7.77 Ссылка для скачивания программы XPrinter Driver Setup V7.77: http://www.xprinter.com.ua/image/data/tovar/ download/xprinter%20driver%20setup%20v7.7
МАРШРУТИЗАТОРЫ ЗЕЛАКС Инструкция по загрузке программного обеспечения с использованием резидентного загрузчика 2001-2005 Зелакс. Все права защищены. Редакция 03 от 18.05.2005 Россия, 124681 Москва, г.
Инструкция по настройке TP-LINK TL- WR1043ND по протоколу PPPoE. Оглавление Подключение к маршрутизатору через Ethernet-кабель (LAN).... 2 Подключение к маршрутизатору по беспроводной сети (Wi-Fi)....
Лабораторная работа 4. Настройка маршрутизатора. Статистическая маршрутизация Маршрутизатор устройство, предназначенное для передачи пакетов между сетями. При определении пути следования пакета маршрутизатор
Настройка сетевых параметров в Windows 7 Оглавление Схема подключения БЕЗ использования домашнего маршрутизатора... 1 Как проверить подключение... 5 Схема подключения с использованием домашнего маршрутизатора...
Настройка сетевых параметров в Windows 10 Оглавление Схема подключения БЕЗ использования домашнего маршрутизатора... 1 Как проверить подключение... 5 Схема подключения с использованием домашнего маршрутизатора...
Краткий обзор порядка подключения, инсталляции и особенностей эксплуатации 1-4Eth-модемов-роутеров Zyxel P-660 xx ВЕРСИЯ 2 при подключении к ADSL от ОАО Укртелеком для пользователей ОС семейства Windows
Лабораторная работа. Настройка NAT-пула с перегрузкой и PAT Топология Таблица адресации Устройство Интерфейс IP-адрес Маска подсети Шлюз по умолчанию Задачи Gateway G0/1 192.168.1.1 255.255.255.0 N/A S0/0/1
Лабораторная работа. Настройка статических маршрутов IPv6 и маршрутов IPv6 по умолчанию Топология Таблица адресации Устройство Интерфейс IPv6-адрес/длина префикса Шлюз по умолчанию Задачи R1 G0/1 2001:DB8:ACAD:A::/64
РУКОВОДСТВО ПО НАСТРОЙКЕ И РАБОТЕ С КОНВЕРТЕРОМ ИНТЕРФЕЙСА Т-11. Версия 1.0 Год 2011 Оглавление Введение... 3 Общие сведения... 3 Топология соединения конвертеров в СКУД «Реверс»... 4 Изменение настроек
Общие сведения о команде ip unnumbered и ее настройке Содержание Введение Предварительные условия Требования Используемые компоненты Условные обозначения Что такое ненумерованный интерфейс? IP и ненумерованный
ООО "Компания "АЛС и ТЕК" ПО семейства коммутаторов АЛС-24000, вер. 6.01 Руководство по инсталляции Листов 13 2017 2 1. ОБЩИЕ СВЕДЕНИЯ 3 1.1. Назначение и область применения 3 2. ТРЕБОВАНИЯ К КОМПЬЮТЕРУ
Восстановление прошивки роутера ER75iX Twin Подключите роутер напрямую к компьютеру с помощью кроссового сетевого кабеля (обычно он помечен красным ярлычком «crosswired») и подключите его к COM-порту компьютера
Использование протокола VRRP в L3- коммутаторах Moxa Настройка дублирования шлюза по умолчанию с помощью протокола VRRP VRRP (Virtual Router Redundancy Protocol) сетевой протокол, предназначенный для увеличения
Сетевой сервер USB over IP с 4 портами USB 2.0 Руководство пользователя DA-70254 Содержание 1. Введение... 3 1.1 Обзор устройства... 3 1.2 Сетевое управление... 3 1.3 Компоненты и функции... 3 1.4 Аппаратурная
IT Essentials 5.0 10.3.1.10 Лабораторная работа настройка брандмауэра Windows XP Распечатайте и выполните эту лабораторную работу. В этой лабораторной работе изучается брандмауэр Windows XP и выполняется
Моделирование будущей сети является обязательной частью любого проекта информационно-телекоммуникационной сети.
Целями моделирования могут являться:
Определение оптимальной топологии;
Выбор сетевого оборудования;
Определение рабочих характеристик сети;
Проверка характеристик новых протоколов.
На модели можно проверить влияние всплесков загрузки, воздействие большого потока широковещательных запросов, что вряд ли кто-то может себе позволить в работающей сети.
Перечисленные задачи предъявляют различные требования к программам, моделирующим функционирование сети. При этом определение характеристик сети до того, как она будет введена в эксплуатацию, имеет первостепенное значение, т. к. позволяет отрегулировать характеристики локальной сети на стадии проектирования. Решение этой проблемы возможно путем аналитического или статистического моделирования.
Аналитическое моделирование сети представляет собой совокупность математических соотношений, связывающих между собой входные и выходные характеристики сети. При выводе таких соотношений приходится пренебрегать какими-то малосущественными деталями или обстоятельствами.
Симуляционное (статистическое) моделирование служит для анализа системы с целью выявления критических элементов сети. Этот тип моделирования используется также для предсказания будущих характеристик системы. Процесс моделирования включат в себя формирование модели, отладку моделирующей программы и проверку корректности выбранной модели. Последний этап обычно состоит из сравнения расчетных результатов с экспериментальными данными, полученными для реальной сети.
Возможны разные подходы к моделированию. Классический подход заключается в воспроизведении событий в сети как можно точнее и поэтапном моделировании последствий этих событий.
Другим подходом может стать метод, где для каждого логического сегмента (зоны столкновений) сначала моделируется очередь событий.
Полное моделирование сети с учетом рабочих приложений предполагает использование следующих характеристик:
Характеристики узла;
Характеристики соединений;
Используемые протоколы;
Характеристики отправляемых пакетов.
Характеристики протоколов:
Длина пакета, посылаемого каждым узлом (длина сообщения + длина адресной части + длина дополнительной присоединяемой информации);
Длина сообщения;
Временное распределение моментов посылки пакетов.
Структура описания каждого из узлов включает в себя:
Номер узла (идентификатор);
Код типа узла;
MAC-адрес;
IP-адрес;
Байт статуса (узел ведет передачу; до узла дошел чужой пакет;….);
Код используемого протокола (IPv4 или IPv6; TCP, UDP, ICMP и т.д.);
Объем входного/выходного буфера. Тип буфера (FIFO, LIFOит.д.).
В каждом из существующих способов моделирования есть свои недостатки. Осуществляя построение сети, необходимо помнить к каким результатам должна привести данная модель.
Для более детального анализа было решено использовать статистическое представление модели. Результаты, полученные с помощью моделирования всех процессов в сети, будут достаточным основанием для оценки качества построенной сети компании «Люкс». Данная модель предполагает моделирование процессов в сети при помощи специальных программных средств.
Прогрмамма моделирования PacketTrecer
PacketTracer - это программа, которая является эмулятором сети передачи данных. Позволяет делать работоспособные модели сети, настраивать (командами Cisco IOS) маршрутизаторы и коммутаторы, взаимодействовать между несколькими пользователями (через облако). Включает в себя серии маршрутизаторов Cisco 1800, 2600, 2800 и коммутаторов 2950, 2960, 3650. Кроме того есть серверы DHCP, HTTP, TFTP, FTP, рабочие станции, различные модули к компьютерам и маршрутизаторам, устройства WiFi, различные кабели. Программа позволяет успешно создавать даже сложные макеты сетей, проверять на работоспособность топологии.
Полностью собранная в эмуляторе и настроенная до полной работоспособности модель ЛВС предприятия представлена на рисунке 6.
Рисунок 6.Общая схема информационно-телекоммуникационной сети.
В серверной комнате находятся сервер баз данных и веб-сервер; маршрутизатор для обеспечения уровня магистрали и распределения, подключенный к Интернет провайдеру; коммутаторы уровня доступа, физически объединяющих 50 конечных пользователей в единую локальную сеть, а также сетевой принтер и точка доступа. Рабочие станции пользователей обозначены схематически. Маршрутизаторы подключаются к Интернет провайдеру по высокоскоростным линиям связи для обеспечения высокой скорости передачи данных. Каждый отдел компании определен в отдельную виртуальную локальную сеть, при помощи маршрутизаторов, что облегчает администрирование сети.
Сеть построена по топологии звезда. Трафик в сети используется для передачи данных между пользователями и файловыми серверами, а так же для передачи данных в сеть интернет. Доступ в интернет предоставляется с помощью технологии PAT, по предоставленным провайдером единому ip адресу.
Модель и моделирование – это универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания объекта, процесса, явления (через модели и моделирование).
Модели и моделирование объединяют специалистов различных областей, работающих над решением межпредметных проблем, независимо от того, где эта модель и результаты моделирования будут применены.
Модель – это некоторое представление или описание оригинала (объекта, процесса, явления), которое при определенных предложениях, гипотезах о поведении оригинала позволяет замещать оригинал для его лучшего изучения, исследования, описания его свойств.
Пример. Рассматривая физическое тело, брошенное с высоты h и падающее свободно в течение t времени, можно записать соотношение: h = gt 2 /2 . Это физико-математическая модель системы (математическая модель физической системы) пути при свободном падении тела. При построении этой модели приняты следующие гипотезы:
1. падение происходит в вакууме (то есть коэффициент сопротивления воздуха равен нулю);
2. ветра нет;
3. масса тела неизменна;
4. тело движется с одинаковым постоянным ускорением g в любой точке.
Слово "модель" (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью".
Проблема моделирования состоит из трех взаимосвязанных задач: построение новой (адаптация известной) модели; исследование модели (разработка метода исследования или адаптация, применение известного); использование (на практике или теоретически) модели.
Схема построения модели М системы S с входными сигналами X и выходными сигналами Y изображена на рис. 30.
Рисунок 30– Схема построения модели
Если на вход М поступают сигналы из X и на входе появляются сигналы из Y , то задан закон, правило f функционирования модели, системы.
Классификацию моделей проводят по различным критериям.
Модель – статическая, если среди параметров описания модели нет (явно) временного параметра.
Модель – динамическая, если среди параметров модели явно выделен временной параметр.
Модель – дискретная, если описывает поведение оригинала лишь дискретно, например, в дискретные моменты времени (для динамической модели).
Модель – непрерывная, если описывает поведение оригинала на всем промежутке времени.
Модель – детерминированная, если для каждой допустимой совокупности входных параметров она позволяет определять однозначно набор выходных параметров; в противном случае – модель недетерминированная, стохастическая (вероятностная).
Модель – функциональная, если представима системой функциональных соотношений (например, уравнений).
Модель – теоретико-множественная, если представима некоторыми множествами и отношениями их и их элементов.
Модель – логическая, если представима предикатами, логическими функциями и отношениями.
Модель – информационно-логическая , если она представима информацией о составных элементах, подмоделях, а также логическими отношениями между ними.
Модель – игровая, если она описывает, реализует некоторую игровую ситуацию между элементами (объектами и субъектами игры).
Модель – алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом ее исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.
Модель – графовая, если она представима графом (отношениями вершин и соединяющих их ребер) или графами и отношениями между ними.
Модель – иерархическая (древовидная), если она представима иерахической структурой (деревом).
Модель – языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.
Модель – визуальная , если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.
Модель – натурная, если она есть материальная копия оригинала.
Модель – геометрическая, если она представима геометрическими образами и отношениями между ними.
Модель – имитационная, если она построена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.
Есть и другие типы моделей.
Пример. Модель F = am – статическая модель движения тела по наклонной плоскости. Динамическая модель типа закона Ньютона: F (t ) = a (t )m (t ) или, еще более точно и лучше, F (t )=s ""(t )m (t ). Если рассматривать только t = 0.1, 0.2, …, 1 (с), то модель S t = gt 2 /2 или числовая последовательность S 0 = 0, S 1 = 0.01g /2, S 2 = 0.04g , …, S 10 = g /2 может служить дискретной моделью движения свободно падающего тела. Модель S = gt 2 /2, 0 < t < 10 непрерывна на промежутке времени (0;10).
Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x 1 и x 2 единиц и стоимостью каждой единицы товара a 1 и a 2 на предприятии описана в виде соотношения a 1 x 1 + a 2 x 2 = S , где S – общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, определяя общую стоимость S в зависимости от тех или иных значений объемов производимых товаров. Приведенные выше физические модели – детерминированные.
Если в модели S = gt 2 /2, 0 < t < 10 мы учтем случайный параметр – порыв ветра с силой p при падении тела, например, просто так: S (p ) = g (p )t 2 /2, 0 < t < 10 , то мы получим стохастическую модель (уже не свободного!) падения. Это – также функциональная модель.
Для множества X = {Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} опишем отношения Y : "Николай – супруг Елены", "Екатерина – супруга Петра", "Татьяна – дочь Николая и Елены", "Михаил – сын Петра и Екатерины". Тогда множества X и Y могут служить теоретико-множественной моделью двух семей.
Совокупность двух логических функций вида: , может служить логической моделью одноразрядного сумматора компьютера.
Пусть игрок 1 – добросовестный налоговый инспектор, а игрок 2 – недобросовестный налогоплательщик. Идет "игра" по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов. Каждый элемент этой матрицы A определяется по правилу a ij = |i – j | . Модель игры описывается этой матрицей и стратегией уклонения и поимки.
Алгоритмической моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности.
Правила правописания – языковая, структурная модель. Глобус – натурная географическая модель земного шара. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает визуальную геометрическую модель окружности на экране компьютера.
Тип модели зависит от связей и отношений его подсистем и элементов, окружения, а не от его физической природы.
Пример. Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.
Основные свойства любой модели:
Целенаправленность;
Конечность;
Упрощенность;
Приблизительность;
Адекватность;
Информативность;
Полнота;
Замкнутость и др.
Жизненный цикл моделируемой системы:
Сбор информации;
Проектирование;
Построение;
Исследование;
Модификация.
Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.
Приведем примеры применения математического, компьютерного моделирования в различных областях:
Энергетика: управление ядерными реакторами, моделирование термоядерных процессов, прогнозирование энергетических процессов, управление энергоресурсами и т.д.;
Экономика: моделирование, прогнозирование экономических и социально-экономических процессов, межбанковские расчеты, автоматизация работ и т.д.;
Космонавтика: расчет траекторий и управления полетом космических аппаратов, моделирование конструкций летательных аппаратов, обработка спутниковой информации и т.д.;
Медицина: моделирование, прогнозирование эпидемий, инфекционных процессов, управление процессом лечения, диагностика болезней и выработка оптимальных стратегий лечения и т.д.;
Производство: управление техническими и технологическими процессами и системами, ресурсами (запасами), планирование, прогнозирование оптимальных процессов производства и т.д.;
Экология: моделирование загрязнения экологических систем, прогноз причинно-следственных связей в экологической системе, откликов системы на те или иные воздействия экологических факторов и т.д.;
Образование: моделирование междисциплинарных связей и систем, стратегий и тактик обучения и т.д.;
Военное дело: моделирование и прогнозирование военных конфликтов, боевых ситуаций, управления войсками, обеспечение армий и т.д.;
Политика: моделирование и прогнозирование политических ситуаций, поведения коалиций различного характера и т.д.;
Социология, общественные науки: моделирование и прогнозирование поведения социологических групп и процессов, общественного поведения и влияния, принятие решений и т.д.;
СМИ: моделирование и прогнозирование эффекта от воздействия тех или иных сообщений на группы людей, социальные слои и др.;
Туризм: моделирование и прогнозирование потока туристов, развития инфраструктуры туризма и др.;
Проектирование: моделирование, проектирование различных систем, разработка оптимальных проектов, автоматизация управления процессом проектирования и т.д.
Современное моделирование сложных процессов и явлений невозможно без компьютера, без компьютерного моделирования.
Компьютерное моделирование – основа представления (актуализации) знаний, как в компьютере, так и с помощью компьютера и с использованием любой информации, которую можно актуализировать с помощью ЭВМ.
Разновидность компьютерного моделирования – вычислительный эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента – компьютера, компьютерной технологии. Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать события и т.д.
Компьютерное моделирование от начала и до завершения проходит следующие этапы.
1. Постановка задачи.
2. Предмодельный анализ.
3. Анализ задачи.
4. Исследование модели.
5. Программирование, проектирование программы.
6. Тестирование и отладка.
7. Оценка моделирования.
8. Документирование.
9. Сопровождение.
10. Использование (применение) модели.
Пример. Рассмотрим популяцию рыб, из которой в текущий момент времени изымается некоторое количество особей (идет лов рыбы). Динамика такой системы определяется моделью вида: x i + 1 = x i + аx i – kx i , х 0 = c , где k – коэффициент вылова (скорость изъятия особей). Стоимость одной пойманной рыбы равна b руб. Цель моделирования - прогноз прибыли при заданной квоте вылова. Для этой модели можно проводить имитационные вычислительные эксперименты и далее модифицировать модель, например следующим образом.
Эксперимент 1. Для заданных параметров a , c изменяя параметр k , определить его наибольшее значение, при котором популяция не вымирает.
Эксперимент 2. Для заданных параметров c , k изменяя параметр a , определить его наибольшее значение, при котором популяция вымирает.
Модификация 1. Учитываем естественную гибель популяции (за счет нехватки пищи, например) с коэффициентом смертности, равным, b : x i + 1 = x i + аx i – (k + b )x i , х 0 = c .
Модификация 2. Учитываем зависимость коэффициента k от x (например, k = dx ): .
Вопросы для обсуждения.
1. что мы называем моделью, моделированием?
2. Из каких взаимосвязанных задач состоит проблема моделирования?
3. Представьте классификацию моделей по различным критериям.
4. От чего зависит тип модели?
5. Перечислите основные свойства любой модели.
6. что мы называем компьютерным моделированием?
О компьютерной сети
Понятие компьютерной сети
Компьютерной сетью называется два и более компьютера, взаимодействующих через среду передачу данных. Под средой передачи данных будем понимать кабельную систему (например, обычный телефонный провод, оптический волоконный кабель) и различные типы беспроводной связи (инфракрасное излучение, лазер и специальные виды радиопередачи).
Компьютеры, входящие в сеть, могут совместно использовать данные, принтеры, факсимильные аппараты, модемы и другие устройства. Этот список можно пополнять, так как возникают новые способы совместного использования ресурсов. Компьютерные сети отличаются сложностью и сферой деятельности. Вследствие этого они классифицируются различными способами. Однако наиболее распространенный способ оценки сетей основывается на размерах географической площади, покрываемой сетью. Первоначально компьютерные сети были небольшими и объединяли до десяти компьютеров и один принтер. Технология ограничивала размеры сети, в том числе количество компьютеров в сети и ее физическую длину. Например, в начале 1980-х годов наиболее популярный тип сетей состоял не более чем из 30 компьютеров, а длина ее кабеля не превышала 185 метров. Такие сети легко располагались в пределах одного этажа здания или небольшой организации. Для маленьких фирм подобная конфигурация подходит и сегодня. Эти сети называются локальными вычислительными сетями ЛВС (LAN, Local Area Network). Самые первые типы локальных сетей не могли соответствовать потребностям крупных предприятий. Вследствие этого возникла необходимость в расширении локальных сетей. Сегодня, когда географические рамки сетей раздвигаются, чтобы соединить пользователей из разных городов и государств, ЛВС превращаются в глобальную вычислительную сеть ГВС (WAN, Wide Area Network), а количество компьютеров в сети практически не ограничено.
Основное назначение компьютерных сетей – совместное использование ресурсов и осуществление интерактивной связи как внутри одной фирмы, так и за ее пределами. Ресурсы – это данные, приложения и периферийные устройства, такие, как внешний дисковод, принтер, мышь, модем и джойстик. Понятие интерактивной связи компьютеров подразумевает обмен сообщениями в реальном режиме времени.
Типы сетей
Все сети имеют некоторые общие компоненты, функции и характеристики. В их числе:
· серверы (server) – компьютеры, предоставляющие свои ресурсы сетевым пользователям;
· клиенты (client) – компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым сервером;
· среда (media) – способ соединения компьютеров;
· совместно используемые данные – файлы, предоставляемые серверами по сети;
· совместно используемые периферийные устройства, например, принтеры, библиотеки CD-ROM и прочие ресурсы – другие элементы, используемые в сети;
Несмотря на определенные сходства, сети разделяются на два типа:
· одноранговые (peer-to-peer);
· на основе сервера (server based).
В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера. Каждый компьютер функционирует и как клиент и как сервер. Все пользователи такой сети самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети. Если к сети подключено более 10 компьютеров, то одноранговая сеть может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы. Выделенным называется такой сервер , который функционирует только как сервер. Серверы специально специализированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом. Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в больших сетях стали специализированными. Например, в сети Windows NT существуют различные типы серверов.
· Файл-серверы и принт-серверы.
Файл-серверы и принт-серверы управляют доступом пользователей к файлам и принтерам. Например, чтобы работать с текстовым процессором, Вы прежде всего должны запустить его на своем компьютере. Документ текстового процессора, хранящийся на файл-сервере, загружается в память Вашего компьютера, и, таким образом, Вы можете работать с этим документом на своем компьютере. Другими словами, файл-сервер предназначен для хранения файлов и данных.
· Серверы приложений.
На серверах приложений выполняются прикладные части клиент-серверных приложений, а также находятся данные, доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отличаются от файл-серверов. В последних файл или данные целиком копируются на запрашивающий компьютер. В сервере приложений на запрашивающий компьютер пересылаются только результаты запроса. То есть вместо всей базы данных на Ваш компьютер с сервера загружается только результат запроса, например, Вы можете получить список студентов, имеющих средний бал за успеваемость равный 4,5.
· Почтовые серверы.
Почтовые серверы управляют передачей электронных сообщений между пользователями сети.
· Факс серверы.
Факс-серверы управляют потоком входящих и исходящих факсимильных сообщений через один или несколько факс-модемов.
· Коммуникационные серверы.
Коммуникационные серверы управляют потоком данных и почтовых сообщений между этой сетью и другими сетями или удаленными пользователями через модем и телефонную линию. Следует отметить, что компьютер в сети клиент/сервер может быть сервером для одного типа приложений и клиентом для другого. Существуют также и комбинированные сети, обедняющие свойства и одноранговых сетей и сетей на основе сервера.
Топология сети
Топология сети характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология сети обуславливает ее характеристики. В частности, выбор той или иной топологии влияет на состав необходимого сетевого оборудования и на его характеристики, на возможности расширения сети, на способ управления сетью.
Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющего другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд ограничений. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия.
Все сети строятся на основе трех базовых топологий:
· звезда;
· кольцо.
Если компьютеры подключены вдоль одного кабеля, называемого сегментом или магистралью, топология называется шиной . Если компьютеры подключены к сегментам кабеля, исходящим из одной точки, топология называется звездой . В том случае когда, кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология называется кольцом .
Шина
Топология "шина" относится к наиболее простым и широко распространенным. В ней используется один кабель (магистраль или сегмент), вдоль которого подключены все компьютеры сети. В сети, построенной на данной топологии, компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электронных сигналов, причем эти данные передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу. Шина - пассивная топология. Это значит, что компьютеры только "слушают" передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не отразится на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.
Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Ясно, чем их больше, то есть чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.
Данные, или электрические сигналы, распространяются по всей сети, то есть по всему участку сегмента кабеля. Сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить. Для этой цели, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы.
К достоинствам шинной топологии следует отнести:
· простота и популярность для ЛВС;
· простота подключения новых компьютеров;
· приспособленность к передаче сообщений с резкими колебаниями интенсивности потока сообщений.
К недостаткам шинной топологии можно отнести:
· топология пассивна, а, следовательно, необходимо усиление сигналов, затухающих в сегменте кабеля;
· при росте числа компьютеров пропускная способность сети падает;
· затруднена защита информации, так как легко можно присоединиться к сети;
Звезда
При топологии "звезда" все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Все сообщения адресуются через концентратор. Среди концентраторов выделяются активные, пассивные и гибридные. Активные концентраторы регенерируют и передают сигналы. К такому концентратору можно подключить от 8 до 12 компьютеров. Пассивные концентраторы просто пропускают через себя сигнал как узлы коммутации, не усиливая и не восстанавливая его. Кроме того, пассивные концентраторы не надо подключать к источнику питания. Гибридными называются концентраторы, к которым можно подключать кабели различных типов. Сети, построенные на концентраторах, легко расширить, если подключить дополнительные концентраторы. Использование концентраторов дает ряд преимуществ.
· разрыв кабеля в сети с топологией "звезда" нарушит работу только данного сегмента, остальные сегменты останутся работоспособными;
· высокая степень защиты данных;
· упрощен поиск неисправностей сети, активные концентраторы часто наделены диагностическими возможностями, позволяющими определить работоспособность соединения.
К недостатку топологии "звезда" следует отнести отказ концентратора, который ведет к отказу всей сети.
Кольцо
При топологии "кольцо" компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии "шина", здесь каждый компьютер выступает в роли репитора (repeator). Репитор - устройство, усиливающее сигнал и передающий его следующему компьютеру. Если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Преимущество кольцевой топологии заключаются в том, что отсутствует зависимость сети от функционирования отдельных узлов (компьютеров). При этом имеется возможность отключить узел без нарушения работы сети. К недостаткам этой топологии можно отнести сложность защиты информации, так как данные при передаче проходят через узлы сети.
Классификация сетей
Компьютерные сети классифицируются по различным признакам.
Сети, состоящие из программно совместимых ЭВМ, являются однородными, или гомогенными . Если ЭВМ, входящие в сеть, программно несовместимы, то такая сеть называется неоднородной, или гетерогенной .
По типу организации передачи данных различают сети с коммутацией каналов, с коммутацией сообщений и с коммутацией пакетов.
По характеру функций сети подразделяются на:
Вычислительные (для решения задач управления на основе вычислительной обработки исходной информации);
Информационные (для получения справочных данных по запросу пользователей);
Смешанные (в которых реализуются вычислительные и информационные функции).
По способу управления сети делятся на сети с децентрализованным, централизованным и смешанным управлением.
По структуре построения сети подразделяются на одноузловые и много узловые, одноканальные и многоканальные.
По территориальному признаку сети могут быть локальными и глобальными.
Локальные сети
Локальные сети представляют собой системы распределенной обработки данных. В отличие от глобальных и региональных сетей они охватывают небольшие территории (диаметром 5-10 км) внутри отдельных предприятий. При помощи общего канала связи локальная сеть может объединять от десятков до сотен абонентских узлов, включающих персональные компьютеры, внешние запоминающие устройства, дисплеи, печатающие и копирующие устройства, кассовые и банковские аппараты и т.д. Локальные сети могут подключаться к другим локальным и большим (региональным, глобальным) сетям с помощью специальных шлюзов, мостов и маршрутизаторов, реализуемых на специализированных устройствах или на ПК с соответствующим программным обеспечением.
Современная стадия развития локальных сетей характеризуется переходом от отдельных сетей к сетям, которые охватывают все предприятие, объединяют разнородные вычислительные ресурсы в единой среде. Такие сети получили название корпоративных.
Глобальные сети
Глобальные сети характеризуются прежде всего обширной географией и огромным количеством абонентов. Для подключения к удаленным компьютерным сетям используются телефонные линии или спутниковая связь.
Для обмена информацией между компьютерами, находящимися на большом расстоянии друг от друга, нужен специальный блок, называемый модемом . Системы телефонной связи разрабатывались для передачи на расстояние только звуков человеческого голоса. Естественные звуки характеризуются переменной высотой тона и непрерывно изменяющейся интенсивностью. Для передачи по телефонной линии они преобразуются в электрический сигнал с непрерывно и соответственно изменяющейся частотой и силой тока. Такой сигнал называется аналоговым. Компьютер, в отличие от телефонной аппаратуры, использует электрический ток только двух уровней. Каждый из них обозначает одно из двух понятных компьютеру значений – логические «0» и «1». Чтобы передать цифровой сигнал по телефонной линии, ему нужно придать приемлемый для нее аналоговый вид. Этой работой и занимается модем. Кроме того, он выполняет обратную процедуру – переводит закодированный аналоговый сигнал в понятный компьютеру цифровой. Слово модем – сокращение терминов МОДулятор / ДЕМодулятор.
При передаче данных компьютер выдает в коммуникационный порт последовательность нулей и единиц, которые могут представлять собой любые данные.
Скорость, с которой модемы соединяются между собой, измеряется в бодах или битах в секунду. Соглашения, описывающие параметры связи, называются протоколами.
В зависимости от модели Вашего и удаленного модема можно устанавливать соединения на следующих скоростях:
Если модем поддерживает протокол
V.32bis – максимальная скорость 14400 бит/с
V32 – 9600 бит/с
V22/V22bis – 2400 бит/с.
При передаче данных через модем каждым десяти переданным битам соответствует о дин байт или символ машинописного текста. Поэтому часто скорость передачи данных между модемами измеряется и в CPS (Characters Per Second) – символов в секунду.
Модемы бывают внутренние и внешние. Внутренние модемы выполнены в виде платы расширения, вставляемой в свободный слот компьютера. Внешние модемы выполнены в виде отдельногоустройства со своим блоком питания.
Глобальная сеть Internet
Типы компьютерных сетей
Назначение компьютерной сети
Основное назначение компьютерных сетей - совместное использование ресурсов и осуществление интерактивной связи как внутри одной формы, так и за ее пределами. Ресурсы - это данные, приложения и периферийные устройства, такие, как внешний дисковод, принтер, мышь, модем или джойстик. Понятие итерактивной связи компьютеров подразумевается обмен сообщениями в реальном режиме времени.
Принтеры и другие периферийные устройства
До появления компьютерных сетей каждый пользователь должен был иметь свой принтер, плоттер и другие периферийные устройства. Чтобы совместно использовать принтер, существовал единственный способ- пересесть за компьютер, подключенный к этому принтеру.
Теперь сети позволяют целому ряду пользователей одновременно "владеть" данными и периферийными устройствами. Если нескольким пользователям надо распечатать документ, все они могут обратиться к сетевому принтеру.
Данные
До появления компьютерных сетей люди обменивались информацией примерно так:
передавали информацию устно (устная речь)
писали записки или письма (письменная речь)
записывали информацию на дискету, несли дискету к другому компьютеру и копировали в него данные
Компьютерные сети упрощают этот процесс, предоставляя пользователям доступ почти к любым типам данных.
Приложения
Сети создают отличные условия для унификации приложений (например, текстового процессора). Это значит, что на всех компьютерах в сети выполняются приложения одного типа и одной версии. Использование единого приложения поможет упростить поддержку всей сети. Действительно, проще изучить одно приложение, чем пытаться освоить сразу четыре или пять. Удобнее также иметь дело с одной версией приложения и настраивать компьютеры одинаковым образом.
СКС – основа компьтерной локальной сети (ЛВС)
СКС – основа локальной сети
Для работы организации требуется локальная сеть, объединяющая компьютеры, телефоны, периферийноое оборудование. Без коипьютерной сети можно обойтись. Только неудобно обмениваться файлами при помощи дискет, выстраиваться возле принтера, доступ в интернет реализовать через один компьютер. Решение этих проблем обеспечивает технология, обозначаемая сокращенно СКС.
Структурированная кабельная система это универсальная телекоммуникационная инфраструктура здания / комплекса зданий, обеспечивающая передачу сигналов всех типов, включая речевые, информационные, видео. СКС может быть установлена прежде, чем станут известны требования пользователей, скорость передачи данных, тип сетевых протоколов.
СКС создает основу компьютерной сети, интегрированной с телефонной сетью. Совокупность телекоммуникационного оборудования здания / комплекса зданий, соединенного с помощью структурированной кабельной системы, называют локальной сетью.
СКС или компьютерная плюс телефонная сеть
Структурированные кабельные системы обеспечивают длительный срок службы, сочетая удобство эксплуатации, качество передачи данных, надежность. Внедрение СКС создает основу повышения эффективности организации, снижения эксплуатационных расходов, улучшения взаимодействия внутри компании, обеспечения качества обслуживания клиентов.
Структурированная кабельная система строится таким образом, чтобы каждый интерфейс (точка подключения) обеспечивал доступ ко всем ресурсам сети. При этом на рабочем месте достаточно двух линий. Одна линия является компьютерной, вторая – телефонной. Линии взаимозаменяемы. Кабели соединяют ТР рабочих мест с портами распределительных пунктов. Распределительные пункты объединяют магистральными линиями по топологии «иерархическая звезда».
СКС является интегрированной системой. Сравним СКС с устаревшей моделью компьютерная плюс телефонная сеть. Ряд преимуществ является очевидным.
интегрированная локальная сеть позволяет передавать разнотипные сигналы;
СКС обеспечивает работу нескольких поколений компьютерных сетей;
интерфейсы СКС позволяют подключать любое оборудование локальных сетей и речевых приложений;
СКС реализует большой диапазон скорости передачи данных от 100 Кбит/сек речевых приложений до 10 Гбит/сек информационных приложений;
администрирование СКС сокращает трудозатраты обслуживания локальной сети благодаря простоте эксплуатации;
компьютерная сеть допускает одновременное использование разнотипных сетевых протоколов;
стандартизация плюс конкуренция рынка СКС обеспечивают снижение цен комплектующих;
локальная сеть позволяет реализовать свободу перемещения пользователей без изменения персональных данных (адресов, телефонных номеров, паролей, прав доступа, классов обслуживания);
администрирование СКС обеспечивает прозрачность компьютерной и телефонной сети – все интерфейсы СКС промаркированы и докуменированы. Работа организация не зависит от сотрудника-монополиста соединений телефонной сети.
Надежная долговечная СКС является фундаментом локальной сети. Однако всякое достоинство имеет обратную сторону. Стандарты СКС рекомендуют избыточность количественных параметров системы, что влечет существенные единовременные затраты. Зато можно забыть о кошмаре перманентного ремонта действующего офиса для наращивания компьютерной сети под текущие потребности.
Стандарты СКС
Стандарты определяют структуру СКС, рабочие параметры конструктивных элементов, принципы проектирования, правила монтажа, методику измерения, правила администрирования, требования телекоммуникационного заземления.
Администрирование СКС включает маркировку портов, кабелей, панелей, шкафов, других элементов, а также систему записей, дополняемую ссылками. Вместе с продуманной организацией кабелей, заложенной на этапе создания СКС, система администрирования позволяет поддерживать хорошую организацию локальной сети. Стандарты СКС 2007 года считают наличие администрирования одним из условий соответствия СКС требованиям стандартов.
СКС определяются международными, европейскими и национальными стандартами. Стандарты СКС адресованы строителям-профессионалам. В России СКС чаще создают организации, специализирующиеся на компьютерных сетях, системах безопасности.
Россия является членом Международной организации стандартизации (ISO), поэтому руководствуется международными стандартами. Данная информация отражает требования международного стандарта ISO/IEC 11801.
Подсистемы СКС
Стандарт ISO/IEC 11801 подразделяет структурированную кабельную систему на три подсистемы:
магистральную подсистему комплекса зданий;
магистральную подсистему здания;
горизонтальную подсистему.
Магистральная подсистема СКС и телефонная сеть
Магистральная подсистема комплекса зданий соединяет кабельные системы зданий.
Магистральная подсистема здания соединяет распределительные пункты этажей.
Магистральная подсистема включает информационную и речеую подсистемы СКС. Основная среда передачи информационной подсистемы – оптоволокно (одномодовое или многомодовое), дополняемое симметричными четырехпарнымикабелями. Если длина магистральной линии не превышает 90 метров, применяют симметричные кабели категории 5 и выше. При большей длине для информационных приложений, то есть компьютерной сети, требуется прокладывать оптоволоконный кабель.
Речевые приложения магистрали здания работают по многопарным кабелям. Речевые приложения, создающие телефонную сеть, относятся к низшим классам СКС. Это позволяет увеличивать длину линий магистральной подсистемы, создаваемых многопарными кабелями, до двух-трех километров.
Горизонтальная подсистема СКС и компьютерная сеть
Горизонтальная подсистема СКС включает распределительные панели, коммутационные кабели распределительных пунктов этажа, горизонтальные кабели, точки консолидации, телекоммуникационные разъемы. Горизонтальная подсистема обеспечивает локальную сеть для абонентов, предоставляет доступ к магистральным ресурсам. Среда передачи горизонтальной подсистемы – симметричные кабели не ниже категории 5. Стандарты СКС 2007 года предусматривают для центров обработки данных выбор СКС не ниже категории 6. Для информационных технологий (компьютерная плюс телефонная сеть) частных домов новые стандарты рекомендуют использовать категорию 6 / 7. Среда передачи вещательных коммуникационных технологий (телевидение, радио) частных домов / квартир – симметричные защищенные кабели с полосой частот 1 ГГц, плюс коаксиальные кабели до 3 ГГц. Допускается также применение оптоволокна.
В горизонтальной подсистеме СКС преобладает компьютерная сеть. Отсюда вытекает ограничение максимальной длины канала – 100 метров независимо от типа среды. Чтобы продлить срок службы без модификаций, горизонтальная подсистема СКС должна обеспечить избыточность, резерв параметров.
Рабочая область в структуре горизонтальной подсистемы СКС
Рабочая область СКС – помещения (часть помещений), где пользователи работают с терминальным (телекоммуникационным, информационным, речевым) оборудованием.
Рабочая область не относится к горизонтальной подсистеме СКС. Функциональным элементом горизонтальной подсистемы СКС является телекоммуникационный разъем – ТР.
Рабочие места оснащаются розетками, включающими два или более телекоммуникационных разъема. Подключение оборудования рабочей области выполняют абонентскими кабелями. Абонентские / сетевые кабели находятся за рамками СКС, однако они позволяют создавать каналы, параметры которых определяются стандартами СКС. К СКС относят коммутационные кабели / перемычки, используемые для соединений между портами панелей / контактами кроссов.
Более 90% кабелей СКС приходится на горизонтальную подсистему. Кабели горизонтальной подсистемы максимально интегрированы в инфраструктуру здания. Любые изменения в горизонтальной подсистеме влияют на работу организации. Поэтому так важна избыточность горизонтальной подсистемы, обеспечивающая беспроблемную длительную эксплуатацию локальной сети.
Существует два метода прокладки кабелей - скрытый и открытый. Для скрытой прокладки используют конструкцию стен, полов, потолков. Однако, это не всегда возможно. Наиболее распространенный вариант кабель каналов – пластиковые короба.
Варианты открытой прокладки кабельных жгутов включают лотки, короба, миниколонны. Скрытая прокладка кабелей предусматривает установку встроенных розеток, монтаж напольных лючков.
Распределительные пункты СКС – узлы локальной сети
Распределительные пункты СКС представляют собой окончания горизонтальных и магистральных линий, которые для удобства использования фиксируют на панелях или кроссах. Для установки панелей, кроссов, сетевого оборудования служат напольные / настенные шкафы, телекоммуникационные стойки. Распределительный пункт может занимать часть шкафа, несколько шкафов. Помещения распределительных пунктов называют телекоммуникационными помещениями, дословно – телекоммуникационными чуланами (Telecommunication closets). На каждом этаже здания рекомендуется устанавливать один РП этажа. Если офисная площадь этажа превышает 1000 квадратных метров, предусматривают дополнительный РП, соединяемый магистральными каналами.
Распределительные пункты СКС создают узлы локальной сети где компактно размещается сетевое и серверное оборудование.
Напольные шкафы позволяют размещать окончания сотен линий, оборудование, блоки УАТС. Tелекоммуникационные стойки обеспечивают вместимость шкафов, но имеют меньшую стоимость. Их используют когда не требуется дополнительной защиты оборудования локальной сети или особых условий эксплуатации. Настенные шкафы рекомендуется выбирать при небольшом числе линий, отсутствии телекоммуникационного помещения. Оборудование шкафов охлаждают вентиляторами.
Сегодня, как и 10 лет назад, существует два типа сети – одноранговая и сеть на основе сервера. Каждая из них имеет как преимущества, так и недостатки.
Одноранговая сеть, скорее всего, придется по душе пользователям, которые хотят сначала попробовать сеть “в деле” или могут позволить только малые затраты на построение и обслуживание сети. Сеть на основе сервера применяется там, где важен полный контроль над всеми рабочими местами. Это может быть и небольшая домашняя сеть, и объемная корпоративная система сетей, объединенных в одну общую.
Эти два разных типа сетей имеют общие корни и принципы функционирования, что в случае необходимой модернизации позволяет перейти от более простого варианта – одноранговой сети – к более сложному – сети на основе сервера.
Одноранговая сеть
Одноранговую сеть построить очень просто. Самая главная характеристика такой сети – все входящие в ее состав компьютеры работают сами по себе, то есть ими никто не управляет.
Фактически одноранговая сеть выглядит как некоторое количество компьютеров, объединенных с помощью одного из типов связи. Именно отсутствие управляющего компьютера – сервера – делает ее построение дешевым и достаточно эффективным. Однако сами компьютеры, входящие в одноранговую сеть, должны быть достаточно мощными, чтобы справляться со всеми основными и дополнительными задачами (административными, защитой от вирусов и т. д.).
Любой компьютер в такой сети можно назвать как рабочим, так и сервером, поскольку нет какого-либо конкретного выделенного компьютера, который осуществлял бы административный или другой контроль. За компьютером такой сети следит сам пользователь (или пользователи), который работает на нем. В этом кроется главный недостаток одноранговой сети – ее пользователь должен не просто уметь работать на компьютере, но и иметь представление об администрировании. Кроме того, ему приходится самому справляться с внештатными ситуациями, возникающими при работе компьютера, и защищать его от разнообразных неприятностей, начиная с вирусов и заканчивая возможными программными и аппаратными неполадками.
Как и полагается, в одноранговой сети используются общие ресурсы, файлы, принтеры, модемы и т. п. Однако из-за отсутствия управляющего компьютера каждый пользователь разделяемого ресурса должен самостоятельно устанавливать правила и методы его использования.
Для работы с одноранговыми сетями можно использовать любую операционную систему. Поддержка одноранговой сети реализована в Microsoft Windows, начиная с Windows 95, поэтому никакого дополнительного программного обеспечения не требуется.
Одноранговая сеть обычно применяется, когда в сеть нужно объединить несколько (как правило, до 10) компьютеров с помощью самой простой кабельной системы соединения и не нужно использовать строгую защиту данных. Большее количество компьютеров подключать не рекомендуется, так как отсутствие “контролирующих органов” рано или поздно приводит к возникновению различных проблем. Ведь из-за одного необразованного или ленивого пользователя под угрозу ставится защита и работа всей сети!
Если вы заинтересованы в более защищенной и контролируемой сети, то создавайте сеть, построенную на основе сервера.
Сеть на основе сервера
Сеть на основе сервера – наиболее часто встречающийся тип сети, который используется как в полноценных домашних сетях и в офисах, так и на крупных предприятиях.
Как ясно из названия, данная сеть использует один или несколько серверов, осуществляющих контроль за всеми рабочими местами. Как правило, сервер характеризуется большой мощностью и быстродействием, необходимыми для выполнения поставленных задач, будь то работа с базой данных или обслуживание других запросов пользователей. Сервер оптимизирован для быстрой обработки запросов от пользователей, обладает специальными механизмами программной защиты и контроля. Достаточная мощность серверов позволяет снизить требование к мощности клиентской машины. За работой сети на основе сервера обычно следит специальный человек – системный администратор. Он отвечает за регулярное обновление антивирусных баз, устраняет возникшие неполадки, добавляет и контролирует общие ресурсы и т.п.
Количество рабочих мест в такой сети может быть разным – от нескольких до сотен или тысяч компьютеров. С целью поддержки производительности сети на необходимом уровне при возрастании количества подключенных пользователей устанавливаются дополнительные серверы. Это позволяет оптимально распределить вычислительную мощь.
Не все серверы выполняют одинаковую работу. Существуют специализированные серверы, которые позволяют автоматизировать или просто облегчить выполнение тех или иных задач.
Файл-сервер. Предназначен, в основном, для хранения разнообразных данных, начиная с офисных документов и заканчивая музыкой и видео. Обычно на таком сервере создаются личные папки пользователей, доступ к которым имеют только они (или другие пользователи, получившие право на доступ к документам этой папки). Для управления таким сервером используется любая сетевая операционная система, равнозначная Windows NT 4.0.
Принт-сервер. Главная задача данного сервера – обслуживание сетевых принтеров и обеспечение доступа к ним. Очень часто, с целью экономии средств, файл-сервер и принт-сервер совмещают в один сервер.
Сервер базы данных. Основная задача такого сервера – обеспечить максимальную скорость поиска и записи нужных данных в базу данных или получения данных из нее с последующей передачей их пользователю сети. Это самые мощные из всех серверов. Они обладают максимальной производительностью, так как от этого зависит комфортность работы всех пользователей.
Сервер приложений. Это промежуточный сервер между пользователем и сервером базы данных. Как правило, на нем выполняются те из запросов, которые требуют максимальной производительности и должны быть переданы пользователю, не затрагивая ни сервер базы данных, ни пользовательский компьютер. Это могут быть как часто запрашиваемые из базы данные, так и любые программные модули.
Другие серверы. Кроме перечисленных выше, существуют другие серверы, например почтовые, коммуникационные, серверы-шлюзы и т. д.
Сеть на основе сервера предоставляет широкий спектр услуг и возможностей, которых трудно или невозможно добиться от одноранговой сети. Кроме того, одноранговая уступает такой сети в плане защищенности и администрирования. Имея выделенный сервер или серверы, легко обеспечить резервное копирование, что является первоочередной задачей, если в сети присутствует сервер базы данных.
Локальная сеть
Концепция построения сети
Самая простая сеть состоит как минимум из двух компьютеров, соединенных друг с другом кабелем. Это позволяет им использовать данный совместно. Все сети основываются именно на этом простом принципе. Хотя идея соединения компьютеров с помощью кабеля не кажется нам особо выдающейся, в свое время она явилась значительным достижением в области коммуникаций.
Сетью называется группа соединенных компьютеров и других устройств. А концепция соединенных и совместно использующих ресурсы компьютеров носит название сетевого взаимодействия
Компьютеры, входящие в сеть, могут совместно использовать:
данные
принтеры
факсимильные аппараты
модемы
другие устройства
Данный список постоянно пополняется, т.к. возникают новые способы совместного использования ресурсов
Локальные вычислительные сети
Первоначально компьютерные сети были небольшими и объединяли до десяти компьютеров в один принтер. Технология ограничивала размеры сети, в том числе количество компьютеров в сети и ее физическую длину. Например, в начале 1980-х годов наиболее популярный тип сетей состоял не более чем из 30 компьютеров, а длина ее кабеля не превышала 185 м.
Проблемы в сетях
Выбор сети, не отвечающей компании, может повлечь за собой проблемы. Чаще всего встречается ситуация, когда выбрана одноранговая сеть, хотя следовало бы установить сеть на основе сервера. Могут возникнуть и проблемы, связанные с компоновкой сети, если ограничения, накладываемые топологией, не позволяет сети работать в некоторых конфигурациях.
Одноранговые сети
В одноранговых сетях, или рабочих группах, могут возникнуть проблемы, вызванные незапланированным вмешательством в работу сетевой станции. Признаком того, что одноранговая сеть не отвечает требованиям фирмы, являются:
трудности, связанные с отсутствием централизованной защиты данных
постоянно возникающие ситуации когда пользователи выключают свои компьютеры, которые выполняют роль серверов.
Сети с топологией "шина"
В сетях с топологией "шина" возможны ситуации, когда - по разным причинам - шина не подключена к терминатору. А это, как известно останавливает работу всей сети.
Кабель может разорваться
Разрыв кабеля приведет к тому, что два его конца окажутся свободными, т.е. без терминаторов. Электрические сигналы начнут отражаться, и сеть перестанет работать.
Кабель может отсоединиться от Т-коннектора
Компьютер отключается от сети, и у кабеля также появляется свободный конец. Начинается отражение сигналов, следовательно, прекращает функционировать вся сеть
Кабель можеть потерять терминатор
При потере терминатора конец кабеля становится свободным. Начинается отражение сигналов, что приводит к выходу из строя всей сети.
Беспроводные сети
Беспроводная среда
Беспроводная среда постепенно входит в нашу жизнь. Как только технология окончательно сформируется, производители предложат широкий выбор продукции по приемлемым ценам, что приведет и к росту спроса на неё, и к увеличению объема продаж. В свою очередь, это вызовет дальнейшее совершенствование и развитие беспроводной среды. Словосочетание "беспроводная среда" может ввести в заблуждение, поскольку означает полное отсутствие проводов в сети, в действительности это не так. Обычно беспроводные компоненты взаимодействуют с сетью в которой - как среда передачи используется кабель, такая сеть со смешенными компонентами называется гибридной.
Возможности
Идея беспроводной среды весьма привлекательна, так как ее компоненты:
Обеспечивают временное подключение к существующей кабельной сети.
Помогают организовать резервное копиование в существующую кабельную сеть
Гарантирует определенный уровень мобильности
Позволяет снять ограничения на максимальную протяженность сети, накладываемые медными или даже оптоволоконными кабелями.
Передача сигналов
Для передачи по кабелю кодированных сигналов используют две технологии - узкополосную передачу и широкополосную передачу.
Узкополосная передача
Узкополосные системы передают данные в виде цифрового сигнала одной частоты. Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного импульса, или, другими словами, цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю.
Широкополосная передача
Широкополосные системы передают данные в виде аналогового сигнала, который использует некоторый интервал частот. Сигналы представляют собой непрерывные электромагнитные или оптические волны. При таком способе сигналы передаются по физической среде в одном направлении.