Вектор скорости и ускорения материальной точки и их модули. Пример решения задач

1. Способы задания движения точки в заданной системе отсчета

Основными задачами кинематики точки являются:

1. Описание способов задания движения точки.

2. Определение кинематических характеристик движения точки (скорости, ускорения) по заданному закону движения.

Механическое движение изменение положения одного тела относительно другого (тела отсчета), с которым связана система координат, называемая системой отсчета .

Геометрическое место последовательных положений движущейся точки в рассматриваемой системе отсчета называется траектория точки.

Задать движение − это дать способ, с помощью которого можно определить положение точки в любой момент времени по отношению к выбранной системе отсчета. К основным способам задания движения точки относятся:

векторный, координатный и естественный .

1.Векторный способ задания движения (рис. 1).

Положение точки определяется радиус-вектором, проведенным из неподвижной точки, связанной с телом отсчета: − векторное уравнение движения точки.

2.Координатный способ задания движения (рис. 2).

В этом случае задаются координаты точки как функции времени:

- уравнения движения точки в координатной форме.

Это и параметрические уравнения траектории движущейся точки, в которых роль параметра играет время . Чтобы записать ее уравнение в явной форме, надо исключить из них . В случае пространственной траектории, исключив , получим:

В случае плоской траектории

исключив , получим:

Или .

3. Естественный способ задания движения (рис. 3).

В этом случае задаются:

1)траектория точки,

2)начало отсчета на траектории,

3) положительное направление отсчета,

4)закон изменения дуговой координаты: .

Этим способом удобно пользоваться, когда траектория точки заранее известна.

2. Скорость и ускорение точки

Рассмотрим перемещение точки за малый промежуток времени (рис. 4):

Тогда − средняя скорость точки за промежуток времени .

Скорость точки в данный момент времени находится как предел средней скорости при :

Скорость точки − это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Среднее ускорениехарактеризует изменение вектора скорости за малый промежуток времени (рис. 5).

Ускорение точки в данный момент времени находится как предел среднего ускорения при :

Ускорение точки − это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени .

Ускорение точки характеризует изменение вектора скорости по величине и направлению. Вектор ускорения направлен в сторону вогнутости траектории.

3. Определение скорости и ускорения точки при координатном способе задания движения

Связь векторного способа задания движения и координатного дается соотношением

(рис. 6).

Из определения скорости:

Проекции скорости на оси координат равны производным соответствующих координат по времени

, , . .

Модуль и направление скорости определяются выражениями:

Точкой сверху здесь и в дальнейшем обозначается дифференцирование по времени

Из определения ускорения:

Проекции ускорения на оси координат равны вторым производным соответствующих координат по времени:

, , .

Модуль и направление ускорения определяются выражениями:

, , .

4 Скорость и ускорение точки при естественном способе задания движения

4.1 Естественные оси.

Определение скорости и ускорения точки при естественном способе задания движения

Естественные оси (касательная, главная нормаль, бинормаль) − это оси подвижной прямоугольной системы координат с началом в движущейся точке. Их положение определяется траекторией движения. Касательная (с единичным вектором ) направлена по касательной в положительном направлении отсчета дуговой координаты и находится как предельное положение секущей, проходящей через данную точку (рис.9). Через касательную проходит соприкасающаяся плоскость (рис. 10), которая находится как предельное положение плоскости p при стремлении точки M1 к точке M. Нормальная плоскость перпендикулярна касательной. Линия пересечения нормальной и соприкасающейся плоскостей − главная нормаль. Единичный вектор главной нормали направлен в сторону вогнутости траектории. Бинормаль (с единичным вектором ) направлена перпендикулярно касательной и главной нормали так, что орты , и образуют правую тройку векторов. Координатные плоскости введенной подвижной системы координат (соприкасающаяся, нормальная и спрямляющая) образуют естественный трехгранник, который перемещается вместе с движущейся точкой, как твердое тело. Его движение в пространстве определяется траекторией и законом изменения дуговой координаты.

Из определения скорости точки

где , − единичный вектор касательной.

Тогда

, .

Алгебраическая скорость − проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.

Из определения ускорения

− переменный по направлению вектор и

Производная определяется только видом траектории в окрестности данной точки, при этом, вводя в рассмотрение угол поворота касательной, имеем , где − единичный вектор главной нормали, − кривизна траектории, − радиус кривизны траектории в данной точке.

В этой главе в основном рассмотрены методы решения задач, в которых закон движения точки выражен так называемым естественным способом: уравнением s=f(t) по заданной траектории *.

* Решения задач, в которых закон движения задан координатным способом, рассмотрены в конце главы (§ 31).

В этом случае главными параметрами, характеризующими движение точки но заданной траектории, являются: s - расстояние от заданного начального положения и t - время.

Величина, характеризующая в каждый данный момент времени направление и быстроту движения точки, называется скоростью (v на рис. 192). Вектор скорости всегда направлен вдоль касательной в ту сторону, куда движется точка. Числовое значение скорости в любой момент времени выражается производной от расстояния по времени:
v = ds/dt или v = f"(t).

Ускорение a точки в каждый данный момент времени характеризует быстроту изменения скорости. При этом нужно отчетливо понимать, что скорость - вектор, и, следовательно, изменение скорости может происходить по двум признакам: по числовой величине (по модулю) и по направлению.

Быстрота изменения модуля скорости характеризуется касательным (тангенсальным) ускорением a t - составляющей полного ускорения a, направленной по касательной к траектории (см. рис. 192).

Числовое значение касательного ускорения в общем случае определяется по формуле
a t = dv/dt или a t = f""(t).

Быстрота изменения направления скорости характеризуется центростремительным (нормальным) ускорением a n - составляющей полного ускорения a, направленного по нормали к траектории в сторону центра кривизны (см. рис. 192).

Числовое значение нормального ускорения определяется в общем случае по формуле
a n = v 2 /R,
где v - модуль скорости точки в данный момент;
R - радиус кривизны траектории в месте, где находится точка в данный момент.

После того как определены касательное и нормальное ускорения, легко определить и ускорение a (полное ускорение точки ).

Так как касательная и нормаль взаимно перпендикулярны, то числовое значение ускорения а можно определить при помощи теоремы Пифагора:
a = sqrt(a t 2 + a n 2).

Направление вектора a можно определить, исходя из тригонометрических соотношений, по одной из следующих формул:
sin α = a n /a; cos α = a t /a; tg α = a n /a t .

Но можно сначала определить направление полного ускорения a использовав формулу tg α = a n /a t ,
а затем найти числовое значение a:
a = a n /sin α или a = a t /cos α.

Касательное и нормальное ускорения точки являются главными кинематическими величинами, определяющими вид и особенности движения точки.

Наличие касательного ускорения (a t ≠0) или его отсутствие (a t =0) определяют соответственно неравномерность или равномерность движения точки.

Наличие нормального ускорения (a n ≠0) или его отсутствие (a n =0) определяют криволинейность или прямолинейность движения точки.

Движение точки можно классифицировать так:
а) равномерное прямолинейное (a t = 0 и a n = 0);
б) равномерное криволинейное (a t = 0 и a n ≠ 0);
в) неравномерное прямолинейное (a t ≠ 0 и a n = 0);
г) неравномерное криволинейное (a t ≠ 0 и a n ≠ 0).

Таким образом, движение точки классифицируется по двум признакам: по степени неравномерности движения и по виду траектории.

Степень неравномерности движения точки задана уравнением s=f(t), а вид траектории задается непосредственно.

§ 27. Равномерное прямолинейное движение точки

Если a t =0 и a n =0, то вектор скорости остается постоянным (v=const), т. е. не изменяется ни по модулю, ни по направлению. Такое движение называется равномерным прямолинейным .

Уравнение равномерного движения имеет вид
(а) s = s 0 + vt
или в частном случае, когда начальное расстояние s 0 =0,
(б) s = vt.

В уравнение (а) входит всего четыре величины, из них две переменные: s и t и две постоянные: s 0 и v. Поэтому в условии задачи на равномерное и прямолинейное движение точки должны быть заданы три любые величины.

При решении задач необходимо выяснить все заданные величины и привести их к одной системе единиц. При этом нужно заметить, что как в системе МКГСС (технической), так и в СИ единицы всех кинематических величин одинаковы: расстояние s измеряется в м, время t - в сек, скорость v - в м/сек.

§ 28. Равномерное криволинейное движение точки

Если a t = 0 и a n ≠ 0, то модуль скорости остается неизменным (точка движется равномерно), но ее направление изменяется и точка движется криволинейно. Иначе, при равномерном движении по криволинейной траектории точка имеет нормальное ускорение, направленное по нормали к траектории и численно равное
a n = v 2 /R,
где R - радиус кривизны траектории.

В частном случае движения точки по окружности (или по дуге окружности) радиус кривизны траектории во всех ее точках постоянный:
R = r = const,
а так как и числовое значение скорости постоянно, то
a n = v 2 /r = const.

При равномерном движении числовое значение скорости определяется из формулы
v = (s - s 0)/t или v = s/t.

Если точка совершит полный пробег по окружности, то путь s равен длине окружности, т. е. s = 2πr = πd (d = 2r - диаметр), а время равно периоду, т. е. t = T. Выражение скорости примет вид
v = 2πr/T = πd/T.

§ 29. Равнопеременное движение точки

Если вектор a t =const (касательное ускорение постоянно как по модулю, так и по направлению), то a n =0. Такое движение называется равнопеременным и прямолинейным .

Если же постоянным остается только числовое значение касательного уравнения
a t = dv/dt = f"(t) = const,
то a n ≠0 и такое движение точки называется равнопеременным криволинейным .

При |a t |>0 движение точки называется равноускоренным , а при |a t |<0 - равнозамедленным .

Уравнение равнопеременного движения независимо от его траектории имеет вид
(1) s = s 0 + v 0 t + a t t 2 / 2.

Здесь s 0 - расстояние точки от исходного положения в момент начала отсчета; v 0 - начальная скорость и a t - касательное ускорение - величины численно постоянные, a s и t - переменные.

Числовое значение скорости точки в любой момент времени определяется из уравнения
(2) v = v 0 + a t t.

Уравнения (1) и (2) являются основными формулами равнопеременного движения и они содержат шесть различных величин: три постоянные: s 0 , v 0 , a t и три переменные: s, v, t.

Следовательно, для решения задачи на равнопеременное движение точки в ее условии должно быть дано не менее четырех величин (систему двух уравнений можно решить лишь в том случае, если они содержат два неизвестных).

Если неизвестные входят в оба основных уравнения, например, неизвестны a t и t, то для удобства решения таких задач выведены вспомогательные формулы:

после исключения a t из (1) и (2)
(3) s = s 0 + (v + v 0)t / 2;

после исключения t из (1) и (2)
(4) s = s 0 + (v 2 - v 0 2) / (2a t).

В частном случае, когда начальные величины s 0 =0 и v 0 =0 (равноускоренное движение из состояния покоя), то получаем те же формулы в упрощенном виде:
(5) s = a t t 2 / 2;
(6) v = a t t;
(7) s = vt / 2;
(8) s = v 2 / (2a t).

Уравнения (5) и (6) являются основными, а уравнения (7) и (8) - вспомогательными.

Равноускоренное движение из состояния покоя, происходящее под действием только силы тяжести, называется свободным падением . К этому движению применимы формулы (5)-(8), причем
a t = g = 9,81 м/сек 2 ≈ 9,8 м/сек 2 .

§ 30. Неравномерное движение точки по любой траектории

§ 31. Определение траектории, скорости и ускорения точки, если закон ее движения задан в координатной форме

Если точка движется относительно некоторой системы координат, то координаты точки изменяются с течением времени. Уравнения, выражающие функциональные зависимости координат движущейся точки от времени, называют уравнениями движения точки в системе координат (см. § 51, п. 2 в учебнике Е. М. Никитина).

Движение точки в пространстве задается тремя уравнениями:
x = f 1 (t);
(1) y = f 2 (t);
z = f 3 (t);

Движение точки в плоскости (рис. 203) задается двумя уравнениями:
(2) x = f 1 (t);
y = f 2 (t);

Системы уравнений (1) или (2) называют законом движения точки в координатной форме .

Ниже рассматривается движение точки в плоскости, поэтому используется только система (2).

Если закон движения точки задан в координатной форме, то:

а) траектория плоского движения точки выражается уравнением
y = F(x),
которое образуется из данных уравнений движения после исключения времени t;

б) числовое значение скорости точки находится из формулы
v = sqrt(v x 2 + v y 2)
после предварительного определения проекции (см. рис. 203) скорости на оси координат
v x = dx/dt и v y = dy/dt;

в) числовое значение ускорения находится из формулы
a = sqrt(a x 2 + a y 2)
после предварительного определения проекций ускорения на оси координат
a x = dv x /dt и a y = dv y /dt;

г) направления скорости и ускорения относительно осей координат определяются из тригонометрических соотношений между векторами скорости или ускорения и их проекциями.

§ 32. Кинематический способ определения радиуса кривизны траектории

При решении многих технических задач возникает необходимость знать радиус кривизны R (или 1/R - кривизну ) траектории. Если задано уравнение траектории, то радиус ее кривизны в любой точке можно определить при помощи дифференциального исчисления. Используя уравнения движения точки в координатной форме, можно определять радиус кривизны траектории движущейся точки без непосредственного исследования уравнения траектории. Определение радиуса кривизны траектории при помощи уравнений движения точки в координатной форме называется кинематическим способом. Этот способ основан на том, что радиус кривизны траектории движущейся точки входит в формулу
a n = v 2 /R,
выражающую числовое значение нормального ускорения.

Отсюда
(а) R = v 2 /a n .

Скорость v точки определяется по формуле
(б) v = sqrt(v x 2 + v y 2).

Следовательно,
(б") v 2 = v x 2 + v y 2 .

Числовое значение нормального ускорения a n входит в выражение полного ускорения точки
a = sqrt(a n 2 + a t 2),
откуда
(в) a n = sqrt(a 2 - a t 2),
где квадрат полного ускорения
(г) a 2 = a x 2 + a y 2
и касательное ускорение
(д) a t = dv/dt.

Таким образом, если закон движения точки задан уравнениями
x = f 1 (t);
y = f 2 (t),
то при определении радиуса кривизны траектории рекомендуется произвести следующее:

1. Продифференцировав уравнения движения, найти выражения проекций на оси координат вектора скорости:
v x = f 1 "(t);
v y = f 2 "(t).

2. Подставив в (б") выражения v x и v y , найти v 2 .

3. Продифференцировав по t уравнение (б), полученное непосредственно из (б"), найти касательное ускорение a t , а затем a t 2 .

4. Продифференцировав вторично уравнения движения, найти выражения проекций на оси координат вектора ускорения
a x = f 1 ""(t) = v x ";
a y = f 2 ""(t) = v y ".

5. Подставив в (г) выражения a x и a y , найти a 2 .

6. Подставить в (в) значения a 2 и a t 2 и найти a n .

7. Подставив в (а) найденные значения v 2 и a n , получить радиус кривизны R.

Скоростью точки называется вектор, определяющий в каждый данный момент времени быстроту и направление движения точки.

Скорость равномерного движения определяется отношением пути, пройденного точкой за некоторый промежуток времени, к величине этого промежутка времени.

Скорость; S- путь; t- время.

Измеряется скорость в единицах длины, деленных на единицу времени: м/с; см/с; км/ч и т.д.

В случае прямолинейного движения вектор скорости направлен вдоль траектории в сторону ее движения.

Если точка за равные промежутки времени проходит неравные пути, то данное движение называется неравномерным. Скорость является величиной переменной и является функцией времени.

Средней за данный промежуток времени скоростью точки называется скорость такого равномерного прямолинейного движения, при котором точка за этот промежуток времени получила бы то же самое перемещение, как и в рассматриваемом ее движении.

Рассмотрим точку М, которая перемещается по криволинейной траектории, заданной законом

За промежуток времени?t точка М переместится в положение М 1 по дуге ММ 1 .Если промежуток времени?t мал, то дугу ММ 1 можно заменить хордой и в первом приближении найти среднюю скорость движения точки

Эта скорость направлена по хорде от точки М к точке М 1 . Истинную скорость найдем путем перехода к пределу при?t> 0

Когда?t> 0, направление хорды в пределе совпадает c направлением касательной к траектории в точке М.

Таким образом, величина скорости точки определяется как предел отношения приращения пути к соответствующему промежутку времени при стремлении последнего к нулю. Направление скорости совпадает с касательной к траектории в данной точке.

Ускорение точки

Отметим, что в общем случае, при движении по криволинейной траектории скорость точки изменяется и по направлению и по величине. Изменение скорости в единицу времени определяется ускорением. Другими словами, ускорением точки называется величина, характеризующая быстроту изменения скорости во времени. Если за интервал времени?t скорость изменяется на величину,то среднее ускорение

Истинным ускорением точки в данный момент времени t называется величина, к которой стремится среднее ускорение при?t> 0, то есть

При отрезке времени стремящимся к нулю вектор ускорения будет меняться и по величине и по направлению, стремясь к своему пределу.

Размерность ускорения

Ускорение может выражаться в м/с 2 ; см/с 2 и т.д.

В общем случае, когда движение точки задано естественным способом, вектор ускорения обычно раскладывают на две составляющие, направленные по касательной и по нормали к траектории точки.

Тогда ускорение точки в момент t можно представить так

Обозначим составляющие пределы через и.

Направление вектора не зависит от величины промежутка?t времени.

Это ускорение всегда совпадает с направлением скорости, то есть, направлено по касательной к траектории движения точки и поэтому называется касательным или тангенциальным ускорением.

Вторая составляющая ускорения точки направлена перпендикулярно к касательной к траектории в данной точке в сторону вогнутости кривой и влияет на изменение направления вектора скорости. Эта составляющая ускорения носит название нормального ускорения.

Поскольку численное значение вектора равно приращению скорости точки за рассматриваемый промежуток?t времени, то численное значение касательного ускорения

Численное значение касательного ускорения точки равно производной по времени от численной величины скорости. Численное значение нормального ускорения точки равно квадрату скорости точки, деленному на радиус кривизны траектории в соответствующей точке кривой

Полное ускорение при неравномерном криволинейном движении точки складывается геометрически из касательного и нормального ускорений.

Даны основные формулы кинематики материальной точки, их вывод и изложение теории.

Содержание

См. также: Пример решения задачи (координатный способ задания движения точки)

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где - единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
.
.
Единичный вектор в направлении касательной к траектории точки:
.

Ускорение точки:
;
;
;
; ;

Тангенциальное (касательное) ускорение:
;
;
.

Нормальное ускорение:
;
;
.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.


.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами (x, y, z) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M - это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где - единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки - это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где - некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Скорость материальной точки - это производная ее радиус-вектора по времени.

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

- проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории .

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени - в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная - это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор - к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины :
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Тогда вектор скорости точки можно представить в виде:
.

Ускорение материальной точки

Ускорение материальной точки - это производная ее скорости по времени.

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают скалярное произведение векторов. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты - касательную к траектории и перпендикулярную к касательной.

Поскольку , то
(3) .

Тангенциальное (касательное) ускорение

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили:
.
Отсюда видно, что тангенциальное ускорение равно проекции полного ускорения на направление касательной к траектории или, что тоже самое, на направление скорости точки.

Тангенциальное (касательное) ускорение материальной точки - это проекция ее полного ускорения на направление касательной к траектории (или на направление скорости).

Символом мы обозначаем вектор тангенциального ускорения, направленный вдоль касательной к траектории. Тогда - это скалярная величина, равная проекции полного ускорения на направление касательной. Она может быть как положительной, так и отрицательной.

Подставив , имеем:
.

Подставим в формулу:
.
Тогда:
.
То есть тангенциальное ускорение равно производной по времени от модуля скорости точки. Таким образом, тангенциальное ускорение приводит к изменению абсолютной величины скорости точки . При увеличении скорости, тангенциальное ускорение положительно (или направлено вдоль скорости). При уменьшении скорости, тангенциальное ускорение отрицательно (или направлено противоположно скорости).

Теперь исследуем вектор .

Рассмотрим единичный вектор касательной к траектории . Поместим его начало в начало системы координат. Тогда конец вектора будет находиться на сфере единичного радиуса. При движении материальной точки, конец вектора будет перемещаться по этой сфере. То есть он будет вращаться вокруг своего начала. Пусть - мгновенная угловая скорость вращения вектора в момент времени . Тогда его производная - это скорость движения конца вектора. Она направлена перпендикулярно вектору . Применим формулу для вращающегося движения. Модуль вектора:
.

Теперь рассмотрим положение точки для двух близких моментов времени. Пусть в момент времени точка находится в положении , а в момент времени - в положении . Пусть и - единичные векторы, направленные по касательной к траектории в этих точках. Через точки и проведем плоскости, перпендикулярные векторам и . Пусть - это прямая, образованная пересечением этих плоскостей. Из точки опустим перпендикуляр на прямую . Если положения точек и достаточно близки, то движение точки можно рассматривать как вращение по окружности радиуса вокруг оси , которая будет мгновенной осью вращения материальной точки. Поскольку векторы и перпендикулярны плоскостям и , то угол между этими плоскостями равен углу между векторами и . Тогда мгновенная скорость вращения точки вокруг оси равна мгновенной скорости вращения вектора :
.
Здесь - расстояние между точками и .

Таким образом мы нашли модуль производной по времени вектора :
.
Как мы указали ранее, вектор перпендикулярен вектору . Из приведенных рассуждений видно, что он направлен в сторону мгновенного центра кривизны траектории. Такое направление называется главной нормалью.

Нормальное ускорение

Нормальное ускорение

направлено вдоль вектора . Как мы выяснили, этот вектор направлен перпендикулярно касательной, в сторону мгновенного центра кривизны траектории.
Пусть - единичный вектор, направленный от материальной точки к мгновенному центру кривизны траектории (вдоль главной нормали). Тогда
;
.
Поскольку оба вектора и имеют одинаковое направление - к центру кривизны траектории, то
.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Нормальное ускорение материальной точки - это проекция ее полного ускорения на направление, перпендикулярное к касательной к траектории.

Подставим . Тогда
.
То есть нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории .

Отсюда можно найти радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

См. также:

СПОСОБе ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ

Определение скорости точки

Скорость - это векторная величина, характеризующая быстроту и направление движения точки в данной системеотсчета.

При векторном способе задания движения положение движущейся точки в каждый момент времени определяется радиусом-вектором , который является функцией времени . Пусть в момент времени t точка занимает положениеМ , определяемое радиусом-вектором , а в момент - положение M 1 , определяемое радиусом-век­тором (рис. 8.6). Из треугольника ОММ 1 ,

.

Рис. 8.6 Рис. 8.7

При перемещении точки ее радиуc-вектор получает приращение:

Из двух последних равенств следует, что вектор перемещения точки является приращением радиуса-вектора точки за промежу­ток времени t .

Отношение вектора перемещения к промежутку времени t ,втечение которого произошло это перемещение, представляет собой вектор средней скорости воображаемого движения точки по хорде ММ 1:

Направление вектора совпадает с направлением Δ . При умень­шении промежутка времени Δt и приближении его к нулю вектор Δ также стремится к нулю, а вектор - к некоторому пределу. Этот предел является вектором скорости точки в момент t :

.

Так как Δt - приращение скалярного аргумента t , а Δ - прираще­ние вектора-функции , то предел отношения при явля­ется векторной производной от по t :

Таким образом, вектор скорости точки в данный момент равен производной от радиуса-вектора точки по времени.

Вектор направлен по хорде MM 1 в сторону движения точки. Когда Δt стремится к нулю, точка M 1 стремится к точке М , т. е. предельным положением секущейMM 1 является касательная.

Из этого следует, что вектор скорости точки направлен по касательной к траектории в сторону движения точки.

При движении точки по криволинейной траектории направление вектора скорости непрерывно изменяется (рис. 8.8).

Скорость точки при неравномерном криволинейном движении изменяется как по модулю, так и по направлению.

Отметим ряд положений движущейся точки на траектории M 1 , M 2 , M 3 , М 4 и покажем в этих положениях скорости точки (рис. 8.8,а).

Выбрав в пространстве некоторую неподвижную точку О 1 , отло­жим от этой точки векторы, геометрически равные скоростям (рис. 8.8,б). Если от точки О 1 отложить скорости, соответствующие всем поло­жениям точки М на кривой АВ, и соединить концы этих векторов, то получится линия CD, являющаяся годографом скорости.



Таким образом, годограф скорости представляет собой геометри­ческое место концов векторов скорости движущейся точки, отложен­ных от одной и той же произвольной точки пространства.

Изобразим на рис. 8.9, а траекторию точки АВ и ее скорость в произвольный момент времени t , а на рис. 8.9, б - годограф ско­рости CD этой точки.

Проведем через точку О 1 оси координат X, Y,Z, параллельные основным осямх,y,z. Тогда радиусом-вектором любой точки N годографа скорости CD будет скорость , а координаты точек годографа X, У, Z будут равны проекциям скорости на оси координат:

Эти уравнения являются параметрическими уравнениями годографа скорости .

Определение ускорения точки

При неравномерном криволинейном движении точки изменяются модуль и направление ее скорости. Ускорение точки характеризует быстроту изменения модуля и направления скорости точки.

Допустим, что в момент времени t точка занимает положение М и имеет скорость , а в момент времени она занимает положение M 1 и имеет скорость (рис. 8.10, а).

Найдем приращение вектора скорости за промежуток времени Δt . Для этого отложим от точки М скорость и построим при этой точке параллелограмм, одной из сторон которого будет скорость , а диагональю - скорость .

Тогда вторая сторона параллелограмма будет приращением вектора скорости , так как

.

Разделив приращение вектора скорости на промежуток времени Δt , получим вектор среднего ускорения точки за этот промежуток:

Этот вектор имеет направление и, следовательно, направлен в cторону вогнутости кривой. Построив годограф скорости CD (рис. 13,б), отложим там же скорости v и v 1 , приращение вектора скорости , а также вектор среднего ускорения , направленный по хорде NN 1 годографа ско­рости. Предел, к которому стремится вектор среднего ускорения , когда Δt стремится к нулю, является вектором ускорения точки α в данный момент времени t: находится в плоскости, проходящей через касательную к траектории точке М и прямую, параллельную касательной в точке М 1 (рис. 10,а). Предельное положение этой плоскости при стремлении точки M 1 к точке М называется соприкасающейся плоскостью.

Из этого следует, что вектор ускорения точки расположен в соприкасающейся плоскости и направлен в сторону вогнутости кривой.

Если кривая плоская, то соприкасающейся плоскостью является плоскость кривой и вектор ускорения лежит в этой плоскости.