Период обращения спутника. Период обращения спутника Частота обращения спутника вокруг земли формула
Во сколько раз период обращения искусственного спутника, совершающего движение по круговой орбите на высоте, равной радиусу Земли, превышает период обращения спутника на околоземной орбите?
Задача №2.5.14 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(h=R\), \(\frac{T_2}{T_1}-?\)
Решение задачи:
Найдем период обращения \(T_2\) спутника, движущегося по круговой орбите на высоте \(h=R\). Понятно, что сила всемирного тяготения сообщает спутнику центростремительное ускорение \(a_ц\), поэтому второй закон Ньютона запишется в следующем виде:
\[{F_{т2}} = m{a_{ц2}}\;\;\;\;(1)\]
Сила тяготения определяется законом всемирного тяготения:
\[{F_{т2}} = G\frac{{Mm}}{{{{\left({R + h} \right)}^2}}}\;\;\;\;(2)\]
Чтобы в нашей формуле фигурировал период обращения, нужно выразить через него центростремительное ускорение \(a_{ц2}\). Для этого запишем формулу определения ускорения \(a_{ц2}\) через угловую скорость и формулу связи последней с периодом.
\[{a_{ц2}} = {\omega ^2}\left({R + h} \right)\]
\[\omega = \frac{{2\pi }}{T_2}\]
\[{a_{ц2}} = \frac{{4{\pi ^2}}}{T_2^2}\left({R + h} \right)\;\;\;\;(3)\]
Подставим выражения (2) и (3) в равенство (1):
Проведем аналогию для спутника, движущегося по околоземной орбите. Понятно, что его период обращения будет равен:
\[{T_1} = 2\pi \sqrt {\frac{{{R^3}}}{{GM}}}\]
Теперь подставим в формулу определения периода \(T_2\) (в формулу (4)) условие \(h=R\):
\[{T_2} = 2\pi \sqrt {\frac{{{{\left({R + R} \right)}^3}}}{{GM}}} = 2\pi \sqrt {\frac{{8{R^3}}}{{GM}}} \]
Искомое отношение равно:
\[\frac{{{T_2}}}{{{T_1}}} = \sqrt 8 = 2\sqrt 2 = 2,83\]
Ответ: в 2,83 раза.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Для определения двух характерных «космических» скоростей, связанных с размерами и полем тяготения некоторой планеты. Планету будем считать одним шаром.
Рис. 5.8. Различные траектории движения спутников вокруг Земли
Первой космической скоростью называют такую горизонтально направленную минимальную скорость, при которой тело могло бы двигаться вокруг Земли по круговой орбите, то есть превратиться в искусственный спутник Земли.
Это, конечно идеализация, во-первых планета не шар, во-вторых, если у планеты есть достаточно плотная атмосфера, то такой спутник - даже если его удастся запустить - очень быстро сгорит. Другое дело, что, скажем спутник Земли, летающий в ионосфере на средней высоте над поверхностью в 200 км имеет радиус орбиты отличающийся от среднего радиуса Земли всего, примерно, на 3 %.
На спутник, движущийся по круговой орбите радиусом (рис. 5.9), действует сила притяжения Земли, сообщающая ему нормальное ускорение
Рис. 5.9. Движение искусственного спутника Земли по круговой орбите
По второму закону Ньютона имеем
Если спутник движется недалеко от поверхности Земли, то
Поэтому для на Земле получаем
Видно,что действительно определяется параметрами планеты:её радиусом и массой.
Период обращения спутника вокруг Земли равен
где - радиус орбиты спутника, а - его орбитальная скорость.
Минимальное значение периода обращения достигается при движении по орбите, радиус которой равен радиусу планеты:
так что первую космическую скорость можно определить и так: скорость спутника на круговой орбите с минимальным периодом обращения вокруг планеты.
Период обращения растет с увеличением радиуса орбиты.
Если период обращения спутника равен периоду обращения Земли вокруг своей оси и их направления вращения совпадают, а орбита расположена в экваториальной плоскости, то такой спутник называется геостационарным .
Геостационарный спутник постоянно висит над одной и той же точкой поверхности Земли (рис. 5.10).
Рис. 5.10. Движение геостационарного спутника
Для того чтобы тело могло выйти из сферы земного притяжения, то есть могло удалиться на такое расстояние, где притяжение к Земле перестает играть существенную роль, необходима вторая космическая скорость (рис. 5.11).
Второй космической скоростью называют наименьшую скорость, которую необходимо сообщить телу, чтобы его орбита в поле тяготения Земли стала параболической, то есть чтобы тело могло превратиться в спутник Солнца.
Рис. 5.11. Вторая космическая скорость
Для того чтобы тело (при отсутствии сопротивления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы кинетическая энергия тела на поверхности планеты была равна (или превосходила) работу, совершаемую против сил земного притяжения. Напишем закон сохранения механической энергии Е такого тела. На поверхности планеты, конкретно - Земли
Скорость получится минимальной,если на бесконечном удалении от планеты тело будет покоиться
Приравнивая эти два выражения,получаем
откуда для второй космической скорости имеем
Для сообщения запускаемому объекту необходимой скорости (первой или второй космической) выгодно использовать линейную скорость вращения Земли, то есть запускать его как можно ближе к экватору, где эта скорость составляет, как мы видели, 463 м/с (точнее 465,10 м/с). При этом направление запуска должно совпадать с направлением вращения Земли - с запада на восток. Легко подсчитать, что таким способом можно выиграть несколько процентов в энергетических затратах.
В зависимости от начальной скорости , сообщаемой телу в точке бросания А на поверхности Земли, возможны следующие виды движения (рис. 5.8 и 5.12):
Рис. 5.12. Формы траектории частицы в зависимости от скорости бросания
Совершенно аналогично рассчитывается движение в гравитационном поле любого другого космического тела,например, Солнца. Чтобы преодолеть силу притяжения светила и покинуть Солнечную систему,объекту,покоящемусю относительно Солнца и находящемуся от него на расстоянии, равном радиусу земной орбиты (см. выше), необходимо сообщить минимальную скорость , определяемую из равенства
где , напомним, это радиус земной орбиты, а - масса Солнца.
Отсюда следует формула, аналогичная выражению для второй космической скорости, где надо заменить массу Земли на массу Солнца и радиус Земли на радиус земной орбиты:
Подчеркнем, что - это минимальная скорость, которую надо придать неподвижному телу, находящемуся на земной орбите, чтобы оно преодолело притяжение Солнца.
Отметим также связь
с орбитальной скоростью Земли . Эта связь, как и должно быть - Земля спутник Солнца, такая же, как и между первой и второй космическими скоростями и .
На практике мы запускаем ракету с Земли, так что она заведомо участвует в орбитальном движении вокруг Солнца. Как было показано выше, Земля движется вокруг Солнца с линейной скоростью
Ракету целесообразно запускать в направлении движения Земли вокруг Солнца.
Скорость, которую необходимо сообщить телу на Земле, чтобы оно навсегда покинуло пределы Солнечной системы, называется третьей космической скоростью .
Скорость зависит от того, в каком направлении космический корабль выходит из зоны действия земного притяжения. При оптимальном запуске эта скорость составляет приблизительно = 6,6 км/с.
Понять происхождение этого числа можно также из энергетических соображений. Казалось бы, достаточно ракете сообщить относительно Земли скорость
в направлении движения Земли вокруг Солнца, и она покинет пределы Солнечной системы. Но это было бы правильно, если бы Земля не имела собственного поля тяготения. Такую скорость тело должно иметь, уже удалившись из сферы земного притяжения. Поэтому подсчет третьей космической скорости очень похож на вычисление второй космической скорости, но с дополнительным условием - тело на большом расстоянии от Земли должно все еще иметь скорость :
В этом уравнении мы можем выразить потенциальную энергию тела на поверхности Земли (второе слагаемое в левой части уравнения) через вторую космическую скорость в соответствии с полученной ранее формулой для второй космической скорости
Отсюда находим
Дополнительная информация
http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 325–332 (§61, 62): выведены формулы для всех космических скоростей (включая третью), решены задачи о движении космических аппаратов, законы Кеплера выведены из закона всемирного тяготения.
http://kvant.mirror1.mccme.ru/1986/04/polet_k_solncu.html - Журнал «Квант» - полет космического аппарата к Солнцу (А. Бялко).
http://kvant.mirror1.mccme.ru/1981/12/zvezdnaya_dinamika.html - журнал «Квант» - звездная динамика (А.Чернин).
http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971 г. - стр. 138–143 (§§ 40, 41): вязкое трение, закон Ньютона.
http://kvant.mirror1.mccme.ru/pdf/1997/06/kv0697sambelashvili.pdf - журнал «Квант» - гравитационная машина (А. Самбелашвили).
http://publ.lib.ru/ARCHIVES/B/""Bibliotechka_""Kvant""/_""Bibliotechka_""Kvant"".html#029 - А.В. Бялко «Наша планета - Земля». Наука 1983 г., гл. 1, пункт 3, стр. 23–26 - приводится схема положения солнечной системы в нашей галактике, направления и скорости движения Солнца и Галактики относительно реликтового излучения.
В космосе гравитация обеспечивает силу, из-за которой спутники (такие, как Луна) вращаются по орбитам вокруг более крупных тел (таких, как Земля). Эти орбиты в общем случае имеют форму эллипса, на чаще всего, этот эллипс не сильно отличается от окружности. Поэтому в первом приближении можно считать орбиты спутников круговыми. Зная массу планеты и высоту орбиты спутника над Землей, можно рассчитать, какой должна быть скорость движения спутника вокруг Земли .
Расчет скорости движения спутника вокруг Земли
Вращаясь по круговой орбите вокруг Земли, спутник в любой точке своей траектории может двигаться только с постоянной по модулю скоростью, хотя направление этой скорости будет постоянно изменяться. Какова же величина этой скорости? Её можно рассчитать с помощью второго закона Ньютона и закона тяготения.
Для поддержания круговой орбиты спутника массы в соответствии со вторым законом Ньютона потребуется центростремительная сила: , где — центростремительное ускорение.
Как известно, центростремительное ускорение определяется по формуле:
где — скорость движения спутника, — радиус круговой орбиты, по которой движется спутник.
Центростремительную силу обеспечивает гравитация, поэтому в соответствии с законом тяготения:
где кг — масса Земли, м 3 ⋅кг -1 ⋅с -2 — гравитационная постоянная.
Подставляя все в исходную формулу, получаем:
Выражая искомую скорость , получаем, что скорость движения спутника вокруг Земли равна:
Это формула скорости, которую должен иметь спутник Земли на заданном радиусе (т.е. расстоянии от центра планеты) для поддержания круговой орбиты. Скорость не может меняться по модулю, пока спутник сохраняет постоянный орбитальный радиус, то есть пока он продолжает обращаться вокруг планеты по круговой траектории.
При использовании полученной формулы следует учитывать несколько деталей:
Искусственные спутники Земли, как правило, обращаются вокруг планеты на высоте от 500 до 2000 км от поверхности планеты. Рассчитаем, с какой скоростью должен двигаться такой спутник на высоте 1000 км над поверхностью Земли. В этом случае км. Подставляя числа, получаем:
Материал подготовлен , Сергеем Валерьевичем
2007 г.
Основная идея
Этот сайт посвящён вопросам наблюдения искуственных спутников Земли
(далее ИСЗ
). Со времени начала космической эры (4 октября 1957 г. был запущен первый ИСЗ - "Спутник-1") человечество создало огромное число спутников, которые кружат вокруг Земли по всевозможным орбитам. На сегодняшний момент число подобных рукотворных объектов превышает десятки тысяч. В основном это "космический мусор" - осколки ИСЗ, отработанные ступени ракет и т.д. Лишь небольшая часть из них составляют действующие ИСЗ.
Среди них есть и исследовательские, и метеорологические, и спутники связи и телекоммуникации, и военные ИСЗ. Пространство вокруг Земли "заселено" ими от высот 200-300 км и до 40000 км. Лишь часть из них доступна для наблюдений с использованием недорогой оптики (бинокли, подзорные трубы, любительские телескопы).
Создавая этот сайт, авторы ставили перед собой цель - собрать воедино информацию о методах наблюдения и съёмки ИСЗ, показать, как расчитывать условия их пролёта над определённой местностью, описать практические аспекты вопроса наблюдения и съёмки. На сайте представлен, в основном, авторский материал, полученный в ходе проведения наблюдений участниками секции "Космонавтика" астрономического клуба "hν" при Минском планетарии (Минск, Беларусь).
И всё же, отвечая на основной вопрос - "Зачем?", нужно сказать следующее. Среди всевозможных хобби, которыми увлекается человек, есть астрономия и космонавтика. Тысячи любителей астрономии наблюдают за планетами, туманностями, галактиками, переменными звёздами, метеорами и прочими астрономическими объектами, фотографируют их, проводят свои конференции и "мастер-классы". Зачем? Это просто хобби, одно из многих. Способ уйти от ежедневных проблем. Даже тогда, когда любители выполняют работы, имеющие научную значимость, они остаются любителями, которые делают это для своего удовольствия. Астрономия и космонавтика - очень "технологичные" увлечения, где можно применить свои знания оптики, электроники, физики и пр. естественно-научных дисциплин. А можно и не применять - и просто получать удовольствие от созерцания. Со спутниками дела обстоят похожим образом. Особенно интересно следить за теми ИСЗ, информация о которых не распространяется в открытых источниках - это военные спутники разведки разных стран. В любом случае, наблюдение ИСЗ - это охота. Часто мы можем заранее указать где и когда покажется спутник, но не всегда. А как он себя будет "вести" - предсказать ещё сложнее.
Благодарности:Описанные методики были созданы на основе наблюдений и исследований, в которых приняли участие члены клуба любителей астрономии "hν" Минского планетария (Беларусь):
- Бозбей Максим.
- Дрёмин Геннадий.
- Кенько Зоя.
- Мечинский Виталий.
Также большую помощь оказали члены клуба любителей астрономии "hν" Лебедева Татьяна , Повалишев Владимир и Ткаченко Алексей . Отдельная благодарность Александру Лапшину (Россия), profi-s (Украина), Даниилу Шестакову (Россия) и Анатолию Григорьеву (Россия) за помощь в создании п. II §1 "Фотометрия ИСЗ", Главы 2 и Главы 5, а Елене (Tau , Россия) также за консультации и написание нескольких расчётных программ. Авторы также благодарят Абгаряна Михаила (Беларусь), Горячко Юрия (Беларусь), Григорьева Анатолия (Россия), Еленина Леонида (Россия), Жука Виктора (Беларусь), Молотова Игоря (Россия), Морозова Константина (Беларусь), Плаксу Сергея (Украина), Прокопюка Ивана (Беларусь) за предоставленные иллюстрации для некоторых разделов сайта.
Часть материалов получена в ходе выполнения заказа УП "Геоинформационные системы" Национальной академии наук Беларуси. Представление материалов выполняется на некоммерческой основе в целях популяризации Белорусской космической программы среди детей и молодежи.
Виталий Мечинский, Куратор секции "Космонавтика" астроклуба "hν".
Новости сайта:
- 01.09.2013: Значительно Обновлён подпункт 2 "Фотометрия ИСЗ за пролёт" п. II §1 -- добавлена информация по двум методикам фотометрии треков ИСЗ (метод фотометрического профиля трека и метод изофотной фотометрии).
- 01.09.2013: Обновлён подпункт п. II §1 -- добавлена информация по работе с рограммой "Highecl" для расчёта вероятных вспышек от ГСС.
- 30.01.2013: Обновлена "Глава 3" -- добавлена информация по работе с рограммой "MagVision" для расчёта падения проницания от засветки со стороны Солнца и Луны.
- 22.01.2013: Обновлена Глава 2. Добавлена анимация движения спутников по небу за одну минуту.
- 19.01.2013: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про устройства подогрева электроники и оптики для защиты от выпадения росы, инея и от излищнего охлаждения.
- 19.01.2013: Добавлена в "Главу 3" информация про падение проницания при засветке от Луны и сумерек.
- 09.01.2013: Добавлен подпункт "Вспышки от лидара ИСЗ "CALIPSO" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения вспышек от лазерного лидара ИСЗ "CALIPSO" и процесс подготовки к ним.
- 05.11.2012: Обновлена вводная часть §2 Главы 5. Добавлена информация о необходимом минимуме оборудования для радионаблюдений ИСЗ, а также приведена схема светодиодного индикатора уровня сигнала, который используется для выставления безопасного для диктофона уровня входного аудио-сигнала.
- 04.11.2012: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про звёздный атлас Брно, а также про красную плёнку на ЖКИ-экраны электронных устройств, используемых при наблюдениях.
- 14.04.2012: Обновлён подпункт подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "SatIR" для отождествления ИСЗ на фотографиях с широким полем зрения, а также определение координат концов треков ИСЗ на них.
- 13.04.2012: Обновлён подпункт "Астрометрия ИСЗ на полученных снимках: фото и видео" подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "AstroTortilla" для определения координат центра поля зрения снимков участков звёздного неба.
- 20.03.2012: Обновлён подпункт п.2 "Классификация орбит ИСЗ по величине большой полуоси" §1 Главы 2. Добавлена информация про величину дрейфа ГСС и возмущений орбиты.
- 02.03.2012: Добавлен подпункт "Наблюдения и съемка запусков ракет на отдалении" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения полёта ракет-носителей на этапе выведения.
- "Конвертирование астрометрии в IOD-формат" подпункта "Фото/видео съёмка ИСЗ" п.I "Определение орбит ИСЗ" §1 Главы 5. Добавлено описание работы с программой "ObsEntry for Window" для конвертации астрометрии ИСЗ в IOD-формат -- аналог программы "OBSENTRY", но для ОС Windows.
- 25.02.2012: Обновлён подпункт "Солнечно-синхронные орбиты" п.1 "Классификация орбит ИСЗ по наклонению" §1 Главы 2. Добавлена информация о расчёте значения наклонения i ss солнечно-синхронной орбиты ИСЗ в зависимости от эксцентриситета и большой полуоси орбиты.
- 21.09.2011: Обновлён подпункт подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о синодическом эффекте, искажающем определение периода вращения ИСЗ.
- 14.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Один пролёт" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе "SatID" для идентификации спутника (используя полученные TLE) среди спутников из сторонней базы TLE, а также описан метод идентификации спутника в программе "Heavensat" на основе увиденного пролёта возле опорной звезды.
- 12.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Несколько пролётов" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе пересчёта TLE-элементов на нужную дату.
- 12.09.2011: Добавлен подпункт "Вхождение ИСЗ в атмосферу Земли" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по работе с программой "SatEvo" для предсказания даты вхождения ИСЗ в плотные слои атмосферы Земли.
- "Вспышки от геостационарных ИСЗ" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о периоде видимости вспышек ГСС.
- 08.09.2011: Обновлён подпункт "Изменение блеска ИСЗ в течении пролёта" подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о виде фазовой функции для нескольких примеров отражающих поверхностей.
- подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о неравномерности шкалы времени вдоль изображения трека ИСЗ на матрице фотоприёмника.
- 07.09.2011: Обновлён подпункт "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлен пример сложной кривой блеска ИСЗ "NanoSail-D" (SCN:37361) и моделирование его вращения.
- "Вспышки от низкоорбитальных ИСЗ" подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлены фотография и фотометрический профиль вспышки от LEO ИСЗ "METEOR 1-29".
- 06.09.2011: Обновлён подпункт "Геостационарные и геосинхронные орбиты ИСЗ" §1 Главы 2. Добавлена информация по классификации геостационарных ИСЗ, информация о форме траекторий ГСС.
- 06.09.2011: Обновлён подпункт "Съёмка пролёта ИСЗ: оборудование для съёмки. Оптические элементы" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлены ссылки на обзоры отечественных объективов в применении к съёмке ИСЗ.
- 06.09.2011: Обновлён подпункт "Фазовый угол" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена анимация изменения фазы спутника в зависимости от фазового угла.
- 13.07.2011: Закончено заполнение всех глав и разделов сайта.
- 09.07.2011: Закончено написание вводной части к п. II "Фотометрия ИСЗ" §1 Главы 5.
- 05.07.2011: Закончено написание вводной части к §2 "Радионаблюдения ИСЗ" Главы 5.
- 04.07.2011: Обновлён подпункт "Обработка наблюдений" п. I "Приём телеметрии ИСЗ" §2 Главы 5.
- 04.07.2011: Закончено написание п. II "Получение снимков облачности" §2 Главы 5.
- 02.07.2011: Закончено написание п. I "Приём телеметрии ИСЗ" §2 Главы 5.
- 01.07.2011: Закончено написание подпункта "Фото/видео съёмка ИСЗ" п. I §1 Главы 5.
- 25.06.2011: Закончено написание Приложений .
- 25.06.2011: Закончено написание вводной части к Главе 5: "Что и как наблюдать?"
- 25.06.2011: Закончено написание вводной части к §1 "Оптические наблюдения" Главы 5.
- 25.06.2011: Закончено написание вводной части к п. I "Определение орбит ИСЗ" §1 Главы 5.
- 25.06.2011: Закончено написание Главы 4: "О времени" .
- 25.01.2011: Закончено написание Главы 2: "Какие орбиты и ИСЗ бывают?" .
- 07.01.2011: Закончено написание Главы 3: "Подготовка к наблюдениям" .
- 07.01.2011: Закончено написание Главы 1: "Как движутся ИСЗ?"
Период обращения спутника
"...Период обращения (спутника): промежуток времени между двумя последовательными прохождениями спутником характерной точки его орбиты..."
Источник:
<РЕГЛАМЕНТ РАДИОСВЯЗИ> (Извлечение)
Официальная терминология . Академик.ру . 2012 .
Смотреть что такое "Период обращения спутника" в других словарях:
период обращения спутника - palydovo sūkio periodas statusas T sritis radioelektronika atitikmenys: angl. period of a satellite; satellite revolution period vok. Satellitenumdrehungsperiode, f; Umlaufzeit eines Satelliten, f rus. период обращения спутника, m pranc. période… … Radioelektronikos terminų žodynas
Период обращения (спутника) - 1. Промежуток времени между двумя последовательными прохождениями спутником характерной точки его орбиты Употребляется в документе: МСЭ 2007 год … Телекоммуникационный словарь
период обращения - Время полного обращения спутника вокруг Земли, определяемое как интервал времени между двумя последовательными проходами спутника через одну и ту же точку орбиты. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь… … Справочник технического переводчика
ПЕРИОД - (греч. periodos путь кругом). 1) промежуток времени между двумя важными историческими событиями. 2) в астрономии то же, что цикл; в арифметике: число цифр, повторяющихся, в том же порядке, бесчисленное множество раз. 3) особенно развитое сложное… … Словарь иностранных слов русского языка
Период Изоляции - Барраяр (англ. Barrayar) вымышленная планета, место действия большинства романов научно фантастического цикла «Сага о Форкосиганах» Лоис МакМастер Буджолд. В широком смысле межзвёздная Барраярская империя с центром на этой планете.… … Википедия
период - сущ., м., употр. часто Морфология: (нет) чего? периода, чему? периоду, (вижу) что? период, чем? периодом, о чём? о периоде; мн. что? периоды, (нет) чего? периодов, чему? периодам, (вижу) что? периоды, чем? периодами, о чём? о периодах 1. Периодом … Толковый словарь Дмитриева
Запуск первого спутника - Первый в мире искусственный спутник Земли Передовица «Правды», посвящённая запуску спутника Спутник 1 первый искусственный спутник Земли, был запущен на орбиту в СССР 4 октября 1957 года. Кодовое обозначение спутника ПС 1 (Простейший Спутник 1).… … Википедия Википедия